【題目】如圖,和是兩個(gè)全等的三角形,,.現(xiàn)將和按如圖所示的方式疊放在一起,保持不動(dòng),運(yùn)動(dòng),且滿(mǎn)足:點(diǎn)E在邊BC上運(yùn)動(dòng)(不與點(diǎn)B,C重合),且邊DE始終經(jīng)過(guò)點(diǎn)A,EF與AC交于點(diǎn)M .
(1)求證:∠BAE=∠MEC;
(2)當(dāng)E在BC中點(diǎn)時(shí),請(qǐng)求出ME:MF的值;
(3)在的運(yùn)動(dòng)過(guò)程中,能否構(gòu)成等腰三角形?若能,請(qǐng)直接寫(xiě)出所有符合條件的BE的長(zhǎng);若不能,則請(qǐng)說(shuō)明理由.
【答案】(1)證明見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析.
【解析】
(1)已知△ABC≌△DEF,根據(jù)全等三角形的性質(zhì)可得∠ABC=∠DEF,又因∠AEC=∠B+∠BAE,∠AEC=∠AEM+∠MEC,即可得∠B+∠BAE=∠AEM+∠MEC,所以∠BAE=∠MEC;(2)當(dāng)E為BC中點(diǎn)時(shí), AB=AC,根據(jù)等腰三角形三線合一的性質(zhì)可得AE⊥BC,∠EAM=60°,再由∠DEM=30°即可證得AC⊥EF; 在Rt△ABE中,∠B=30°,,求得BE=,即可求得BC=3;在Rt△CEM中,∠C=30°,EC=E,求得EM=,根據(jù)全等三角形的性質(zhì)可得BC=EF=3,所以FM= EF-EM=,即可得EM:FM=1:3 ;(3)分AM=AE、EA=EM、三種情況求解即可.
(1)證明:∵△ABC≌△DEF
∴∠ABC=∠DEF
∵∠AEC=∠B+∠BAE,∠AEC=∠AEM+∠MEC;
∴∠B+∠BAE=∠AEM+∠MEC,
即∠BAE=∠MEC ;
(2)當(dāng)E為BC中點(diǎn)時(shí),
∵AB=AC,
∴AE⊥BC,BE=EC= ,∠EAM=60°,
又∵∠DEM=30°,
∴AC⊥EF;
∵,,
∴∠B=∠C=30°,
在Rt△ABE中,∠B=30°,,
∴BE=,
∴BC=3;
在Rt△CEM中,∠C=30°,EC=,
∴EM=,
∵△ABC≌△DEF,
∴BC=EF=3,
∴FM= EF-EM=,
∴EM:FM=1:3;
(3)當(dāng)或2時(shí),是等腰三角形.
①當(dāng)時(shí),如圖,
,
此時(shí)點(diǎn)E與點(diǎn)B重合,與題意矛盾(舍去 ) ;
②當(dāng)時(shí),如圖,
由(1)知,
,
,,
,
,
,
③當(dāng)時(shí),如圖,
則,
,
取BE中點(diǎn)I,連結(jié)AI,
則,,
是等邊三角形,
設(shè),在中,
由勾股定理,得,
即,解得
.
綜上所述,當(dāng)或2時(shí),是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】操作與探究
圖(1)
定義:三邊長(zhǎng)和面積都是整數(shù)的三角形稱(chēng)為“整數(shù)三角形”.
數(shù)學(xué)學(xué)習(xí)小組的同學(xué)從32根等長(zhǎng)的火柴棒(每根長(zhǎng)度記為1個(gè)單位)中取出若干根,首尾依次相接組成三角形,進(jìn)行探究活動(dòng).
小東用12根火柴棒,擺成如圖所示的“整數(shù)三角形”;
小穎分用24根火柴棒擺出直角“整數(shù)三角形”;
小軍受到小東、小穎的啟發(fā),用30根火柴棒擺出直角“整數(shù)三角形”;
(1)請(qǐng)你畫(huà)出小穎和小軍擺出的直角“整數(shù)三角形”的示意圖;
(2)你能否也從中取出若干根,按下列要求擺出“整數(shù)三角形”,如果能,請(qǐng)畫(huà)出示意圖;如果不能,請(qǐng)說(shuō)明理由.
①擺出一個(gè)等腰“整數(shù)三角形”;
②擺出一個(gè)非特殊(既非直角三角形,也非等腰三角形)“整數(shù)三角形”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】開(kāi)學(xué)初,小芳和小亮去商店購(gòu)買(mǎi)學(xué)習(xí)用品,小芳用30元錢(qián)購(gòu)買(mǎi)鋼筆的數(shù)量是小亮用25元錢(qián)購(gòu)買(mǎi)筆記本數(shù)量的2倍,已知每支鋼筆的價(jià)格比每本筆記本的價(jià)格少2元.
(1)求每支鋼筆和每本筆記本各是多少元;
(2)學(xué)校運(yùn)動(dòng)會(huì)后,班主任拿出200元學(xué)校獎(jiǎng)勵(lì)基金交給小芳,再次購(gòu)買(mǎi)上述價(jià)格的鋼筆和筆記本共48件作為獎(jiǎng)品,獎(jiǎng)勵(lì)給校運(yùn)動(dòng)會(huì)中表現(xiàn)突出的同學(xué),經(jīng)雙方協(xié)商,商店給出優(yōu)惠是購(gòu)買(mǎi)商品的總金額超出50的部分給打九折,請(qǐng)問(wèn)小芳至少要買(mǎi)多少支鋼筆?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸相交于兩點(diǎn)A(1,0),B(3,0),與y軸相交于點(diǎn)C(0,3).
(1)求拋物線的函數(shù)關(guān)系式.
(2)將y=ax2+bx+c化成y=a(x﹣m)2+k的形式(請(qǐng)直接寫(xiě)出答案).
(3)若點(diǎn)D(3.5,m)是拋物線y=ax2+bx+c上的一點(diǎn),請(qǐng)求出m的值,并求出此時(shí)△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,AD∥BC,∠B=∠C,要使四邊形ABCD為矩形,還需添加一個(gè)條件,這個(gè)條件可以是( )
A. AB=CD
B. AC=BD
C. ∠A=∠D
D. ∠A=∠B
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在⊙O 中,P是⊙O內(nèi)一點(diǎn),過(guò)點(diǎn)P最短和最長(zhǎng)的弦分別為6和10,則經(jīng)過(guò)點(diǎn)P且長(zhǎng)度為整數(shù)的的弦共有( )條。
A.5
B.8
C.10
D.無(wú)數(shù)條
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】取一張正方形的紙片進(jìn)行折疊,具體操作過(guò)程如下:
第一步:如圖1,先把正方形ABCD對(duì)折,折痕為MN.
第二步:點(diǎn)G在線段 MD上,將△GCD沿GC翻折,點(diǎn)D恰好落在MN上,記為點(diǎn)P,連接BP.
(1)判斷△PBC的形狀,并說(shuō)明理由;
(2)作點(diǎn)C關(guān)于直線AP的對(duì)稱(chēng)點(diǎn)C′,連接PC′、DC′.
①在圖2中補(bǔ)全圖形,并求出∠APC′的度數(shù);
②猜想∠PC′D的度數(shù),并加以證明;(溫馨提示:當(dāng)你遇到困難時(shí),不妨連接AC′、CC′,研究圖形中特殊的三角形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)七邊形棋盤(pán)如圖所示,7個(gè)頂點(diǎn)順序從0到6編號(hào),稱(chēng)為七個(gè)格子.一枚棋子放在0格,現(xiàn)在依逆時(shí)針移動(dòng)這枚棋子,第一次移動(dòng)1格,第二次移動(dòng)2格,…,第n次移動(dòng)n格.則不停留棋子的格子的編號(hào)有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓心角∠AOB=120°,弦AB=2 cm.
(1)求⊙O的半徑r;
(2)求劣弧 的長(zhǎng)(結(jié)果保留 ).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com