【題目】如圖,已知二次函數(shù)c為常數(shù)的圖象經(jīng)過點,點,頂點為點M,過點A作軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC.
求該二次函數(shù)的解析式及點M的坐標.
過該二次函數(shù)圖象上一點P作y軸的平行線,交一邊于點Q,是否存在點P,使得以點P、Q、C、O為頂點的四邊形為平行四邊形,若存在,求出P點坐標;若不存在,說明理由.
點N是射線CA上的動點,若點M、C、N所構(gòu)成的三角形與相似,請直接寫出所有點N的坐標直接寫出結(jié)果,不必寫解答過程.
【答案】二次函數(shù)解析式為,點M的坐標為; 存在平行四邊形,; ,,,.
【解析】
將點A、點C的坐標代入函數(shù)解析式,即可求出b、c的值,通過配方法得到點M的坐標;
根據(jù)平行四邊形的判定對邊平行且相等,可得關(guān)于m的方程,根據(jù)解方程,可得答案;
由題意分析可得,則若與相似,則要進行分類討論,分成∽或∽兩種,然后利用邊的對應(yīng)比值求出N點坐標的橫坐標,再利用自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案.
把點,點代入二次函數(shù)得,
解得
二次函數(shù)解析式為,
配方得,
點M的坐標為;
由知,當(dāng)時,
,
解之,或
、
令P點橫坐標為m,
當(dāng)PQ與BC邊相交時,
,
此時不存在平行四邊形.
當(dāng)PQ與AC邊相交時,
由、可得直線AC解析式
,
,
,
令
,
,
,
此方程無解,
此時不存在平行四邊形.
當(dāng)PQ與AB邊相交時,
、
,
令
,
化簡,得,
解得,
當(dāng)時,,
點坐標為,
此時,存在平行四邊形,;
連接MC,作軸并延長交AC于點N,則點G坐標為
,
,
,
把代入解得,則點P坐標為,
,,
,
,
由此可知,若點N在AC上,則,則點D與點C必為相似三角形對應(yīng)點
若有∽,則有,
,,
,
,
,
若點N在y軸右側(cè),作軸,
,
,
把代入,解得,
;
同理可得,若點N在y軸左側(cè),
把代入,解得
;
若有∽,則有
,
,
若點N在y軸右側(cè),把代入,解得;
若點N在y軸左側(cè),把代入,解得
;.
所有符合題意得點N坐標有4個,分別為,,,.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶八中的老師工作很忙,但初一年級很多數(shù)學(xué)老師仍然堅持鍛煉身體,比如張老師就經(jīng)常堅持飯后走一走.某天晚飯后他從學(xué)校慢步到附近的中央公園,在公園里休息了一會后,因?qū)W校有事,快步趕回學(xué)校.下面能反映當(dāng)天張老師離學(xué)校的距離y與時間x的關(guān)系的大致圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察猜想
如圖①,點B、A、C在同一條直線上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數(shù)量關(guān)系為
(2)問題解決
如圖②,在Rt△ABC中,∠ABC=90°,CB=8,AB=4,以AC為直角邊向外作等腰Rt△DAC連接BD,求BD的長。
(3)拓展延伸
如圖③,在四邊形ABCD中,∠ABC=∠ADC=90°,CB=8.AB=4,DC=DA,則BD=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=25°,點M、N分別是邊OA、OB上的定點,點P、Q分別是邊OB、OA上的動點,記∠MPQ=α,∠PQN=β,當(dāng)MP+PQ+QN最小時,則β﹣α的值為( 。
A.50°B.40°C.30°D.25°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)在數(shù)學(xué)興趣小組活動中,小明進行數(shù)學(xué)探究活動.將邊長為2的正方形ABCD與邊長為的正方形AEFG按圖1位置放置,AD與AE在同一條直線上,AB與AG在同一條直線上.
(1)小明發(fā)現(xiàn),請你幫他說明理由.
(2)如圖2,小明將正方形ABCD繞點A逆時針旋轉(zhuǎn),當(dāng)點B恰好落在線段DG上時,請你幫他求出此時BE的長.
(3)如圖3,若小明將正方形ABCD繞點A繼續(xù)逆時針旋轉(zhuǎn),線段DG與線段BE將相交,交點為H,寫出△與△面積之和的最大值,并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將證明過程補充完整.
如圖,DE∥AB,FG⊥AC,∠1=∠3,求證:BD⊥AC.
證明:∵DE∥AB(已知),
∴∠1=_______(_______)
∵∠1=∠3(已知),
∴∠3=_______(等量代換),
∴FG∥BD(_______),
∴∠ADB=∠AFG(_______)
∵FG⊥AC(已知),
∴∠AFG=90°(垂直的定義),
∴∠ADB=90°(_______),
∴BD⊥AC(_______)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“家電下鄉(xiāng)”活動期間,凡購買指定家用電器的農(nóng)村居民均可得到該商品售價13%的財政補貼.村民小李購買了一臺A型洗衣機,小王購買了一臺B型洗衣機兩人一共得到財政補貼351元,又知B型洗衣機售價比A型洗衣機售價多500元.求:
(1)A型洗衣機和B型洗衣機的售價各是多少元?
(2)小李和小王購買洗衣機除財政補貼外實際各付款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,∠MON=30°,點A1、A2、A3在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=a,則△A7B7A8的邊長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分別為A、B.
求證:①△ADC≌△BCE;
②AD+AB=BE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com