【題目】(本題滿分12分)在數(shù)學(xué)興趣小組活動中,小明進(jìn)行數(shù)學(xué)探究活動.將邊長為2的正方形ABCD與邊長為的正方形AEFG按圖1位置放置,AD與AE在同一條直線上,AB與AG在同一條直線上.
(1)小明發(fā)現(xiàn),請你幫他說明理由.
(2)如圖2,小明將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)B恰好落在線段DG上時(shí),請你幫他求出此時(shí)BE的長.
(3)如圖3,若小明將正方形ABCD繞點(diǎn)A繼續(xù)逆時(shí)針旋轉(zhuǎn),線段DG與線段BE將相交,交點(diǎn)為H,寫出△與△面積之和的最大值,并簡要說明理由.
【答案】(1)見解析;(2)(3)6
【解析】
試題(1)由四邊形ABCD與四邊形AEFG為正方形,利用正方形的性質(zhì)得到兩對邊相等,且夾角相等,利用SAS得到三角形ADG與三角形ABE全等,利用全等三角形對應(yīng)角相等得∠AGD=∠AEB,如圖1所示,延長EB交DG于點(diǎn)H,利用等角的余角相等得到∠DHE=90°,利用垂直的定義即可得DG⊥BE;
(2)由四邊形ABCD與四邊形AEFG為正方形,利用正方形的性質(zhì)得到兩對邊相等,且夾角相等,利用SAS得到三角形ADG與三角形ABE全等,利用全等三角形對應(yīng)邊相等得到DG=BE,如圖2,過點(diǎn)A作AM⊥DG交DG于點(diǎn)M,∠AMD=∠AMG=90°,在直角三角形AMD中,求出AM的長,即為DM的長,根據(jù)勾股定理求出GM的長,進(jìn)而確定出DG的長,即為BE的長;
(3)△GHE和△BHD面積之和的最大值為6,理由為:對于△EGH,點(diǎn)H在以EG為直徑的圓上,即當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),△EGH的高最大;對于△BDH,點(diǎn)H在以BD為直徑的圓上,即當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),△BDH的高最大,即可確定出面積的最大值.
試題解析:(1)∵四邊形ABCD和四邊形AEFG都為正方形,
∴AD=AB,∠DAG=∠BAE=90°,AG=AE,
在△ADG和△ABE中,
,
∴△ADG≌△ABE(SAS),
∴∠AGD=∠AEB,
如圖1所示,延長EB交DG于點(diǎn)H,
在△ADG中,∠AGD+∠ADG=90°,
∴∠AEB+∠ADG=90°,
在△EDH中,∠AEB+∠ADG+∠DHE=180°,
∴∠DHE=90°,
則DG⊥BE;
(2)∵四邊形ABCD和四邊形AEFG都為正方形,
∴AD=AB,∠DAB=∠GAE=90°,AG=AE,
∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,
在△ADG和△ABE中,
∴△ADG≌△ABE(SAS),
∴DG=BE,
如圖2,過點(diǎn)A作AM⊥DG交DG于點(diǎn)M,∠AMD=∠AMG=90°,
∵BD為正方形ABCD的對角線,
∴∠MDA=45°,
在Rt△AMD中,∠MDA=45°,
∴cos45°=,
∵AD=2,
∴DM=AM=,
在Rt△AMG中,根據(jù)勾股定理得:GM=,
∵DG=DM+GM=,
∴BE=DG=;
(3)△GHE和△BHD面積之和的最大值為6,理由為:
對于△EGH,點(diǎn)H在以EG為直徑的圓上,
∴當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),△EGH的高最大;
對于△BDH,點(diǎn)H在以BD為直徑的圓上,
∴當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),△BDH的高最大,
則△GHE和△BHD面積之和的最大值為2+4=6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E在邊CD上,將該矩形沿AE折疊,使點(diǎn)D落在邊BC上的點(diǎn)F處,過點(diǎn)F作FG∥CD,交AE于點(diǎn)G,連接DG.
(1)求證:四邊形DEFG為菱形;
(2)若CD=8,CF=4,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(diǎn)A(-1,12),B(2,-3).
(1)求這個(gè)二次函數(shù)的解析式;
(2)求這個(gè)圖象的頂點(diǎn)坐標(biāo)及與x軸的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD的頂點(diǎn)為A(1,2),B(﹣1,2),C(﹣1,﹣2),D(1,﹣2).點(diǎn)M和點(diǎn)N同時(shí)從E點(diǎn)出發(fā),沿四邊形的邊做環(huán)繞勻速運(yùn)動,M點(diǎn)以1單位/s的速度做逆時(shí)針運(yùn)動,N點(diǎn)以2單位/s的速度做順時(shí)針運(yùn)動,則點(diǎn)M和點(diǎn)N第2016次相遇時(shí)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點(diǎn),以BD為直徑的⊙O經(jīng)過點(diǎn)E,且交BC于點(diǎn)F.
(1)求證:AC是⊙O的切線;
(2)若BF=6,⊙O的半徑為5,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)c為常數(shù)的圖象經(jīng)過點(diǎn),點(diǎn),頂點(diǎn)為點(diǎn)M,過點(diǎn)A作軸,交y軸于點(diǎn)D,交該二次函數(shù)圖象于點(diǎn)B,連結(jié)BC.
求該二次函數(shù)的解析式及點(diǎn)M的坐標(biāo).
過該二次函數(shù)圖象上一點(diǎn)P作y軸的平行線,交一邊于點(diǎn)Q,是否存在點(diǎn)P,使得以點(diǎn)P、Q、C、O為頂點(diǎn)的四邊形為平行四邊形,若存在,求出P點(diǎn)坐標(biāo);若不存在,說明理由.
點(diǎn)N是射線CA上的動點(diǎn),若點(diǎn)M、C、N所構(gòu)成的三角形與相似,請直接寫出所有點(diǎn)N的坐標(biāo)直接寫出結(jié)果,不必寫解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,AC=AD,增加下列條件:①AB=AE;②BC=DE;③∠C=∠D;④∠B=∠E,其中能使△ABC≌△AED的條件是______________.(填寫序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解“陽光體育”活動情況,我市教育部門在某所初中2000名學(xué)生中,隨機(jī)抽取了若干學(xué)生進(jìn)行問卷調(diào)查(要求每位學(xué)生只能填寫一種自己喜歡的活動),并將調(diào)查的結(jié)果繪制成如圖的兩個(gè)不完整的統(tǒng)計(jì)圖:
根據(jù)以上信息解答下列問題:
(1)參加調(diào)查的人數(shù)共有_____人,在扇形圖中,表示“C”的扇形的圓心角為______度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中的m;
(3)估計(jì)該校喜歡“B”項(xiàng)目的學(xué)生一共有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com