【題目】如圖,在Rt△ABC中,∠ACB=90°,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.

(1)求證:CE=AD;
(2)當(dāng)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?請說明你的理由.

【答案】
(1)證明:∵DE⊥BC,

∴∠DFB=90°,

∵∠ACB=90°,

∴∠ACB=∠DFB,

∴AC∥DE,

∵M(jìn)N∥AB,即CE∥AD,

∴四邊形ADEC是平行四邊形,

∴CE=AD


(2)解:四邊形BECD是菱形,

理由是:∵D為AB中點(diǎn),

∴AD=BD,

∵CE=AD,

∴BD=CE,

∵BD∥CE,

∴四邊形BECD是平行四邊形,

∵∠ACB=90°,D為AB中點(diǎn),

∴CD=BD,

四邊形BECD是菱形


(3)當(dāng)∠A=45°時(shí),四邊形BECD是正方形,理由是:

解:∵∠ACB=90°,∠A=45°,

∴∠ABC=∠A=45°,

∴AC=BC,

∵D為BA中點(diǎn),

∴CD⊥AB,

∴∠CDB=90°,

∵四邊形BECD是菱形,

∴菱形BECD是正方形,

即當(dāng)∠A=45°時(shí),四邊形BECD是正方形


【解析】(1)先求出四邊形ADEC是平行四邊形,根據(jù)平行四邊形的性質(zhì)推出即可;(2)求出四邊形BECD是平行四邊形,求出CD=BD,根據(jù)菱形的判定推出即可;(3)求出∠CDB=90°,再根據(jù)正方形的判定推出即可.
【考點(diǎn)精析】本題主要考查了平行四邊形的判定與性質(zhì)和菱形的判定方法的相關(guān)知識點(diǎn),需要掌握若一直線過平行四邊形兩對角線的交點(diǎn),則這條直線被一組對邊截下的線段以對角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積;任意一個(gè)四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)x=2時(shí),代數(shù)式ax-2x的值為4,當(dāng)x=-2時(shí),這個(gè)代數(shù)式的值為(

A. -8B. -4C. -2D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國“釣魚島”周圍海域面積約170 000km2 , 該數(shù)用科學(xué)記數(shù)法可表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,以AB為邊在正方形內(nèi)作等邊△ABE,連接DE,CE,則∠CED的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,ABCD中,BE,CF分別是∠ABC和∠BCD的一平分線,BE,CF相交于點(diǎn)O.

(1)求證:BE⊥CF;
(2)試判斷AF與DE有何數(shù)量關(guān)系,并說明理由;
(3)當(dāng)△BOC為等腰直角三角形時(shí),四邊形ABCD是何特殊四邊形?
(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知頂點(diǎn)為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點(diǎn)(﹣1,﹣4),則下列結(jié)論中錯誤的是(  )

A. b2>4ac

B. ax2+bx+c≥﹣6

C. 若點(diǎn)(﹣2,m),(﹣5,n)在拋物線上,則m>n

D. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P在線段AB的垂直平分線上,PA=6,則PB=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線lykx+5k+12k0),當(dāng)k變化時(shí),原點(diǎn)到這條直線的距離的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知圓錐的底面半徑為4cm,母線長為5cm,則這個(gè)圓錐的側(cè)面積是(
A.20πcm2
B.20cm2
C.40πcm2
D.40cm2

查看答案和解析>>

同步練習(xí)冊答案