【題目】如圖,折疊長方形紙片ABCD,使點(diǎn)D落在邊BC上的點(diǎn)F處,折痕為AE,AB=CD=6,AD=BC=10,試求EC的長度.
【答案】解:∵△AFE是由△ADE折疊得到, ∴AF=AD=10cm,F(xiàn)E=DE,
在Rt△ABF中,BF= = =8cm,
∴CF=2cm,
設(shè)CE=xcm,則FE=DE=(6﹣x)cm,
在Rt△FCE中,F(xiàn)E2=EC2+FC2 , 即(6﹣x)2=22+x2 ,
解得x= ,
即CE= cm
【解析】由四邊形ABCD為矩形,AB=6cm,BC=10cm,又由折疊的性質(zhì),即可得AF=AD,然后在Rt△ABF中,利用勾股定理求得BF的長,即可得CF的長,然后設(shè)CE=xcm,在Rt△FCE中,由勾股定理即可得方程:(6﹣x)2=22+x2 , 解此方程即可求得CE的長
【考點(diǎn)精析】本題主要考查了勾股定理的概念和翻折變換(折疊問題)的相關(guān)知識點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)27﹣19+(﹣7)﹣32;
(2)(﹣7)÷(﹣ )×(﹣ );
(3)( ﹣ + )×(﹣36)
(4)﹣14﹣ ×[2﹣(﹣3)2].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2014年1月1日零點(diǎn),北京、上海、重慶、寧夏的氣溫分別是﹣4℃、5℃、6℃、﹣8℃,當(dāng)時(shí)這四個(gè)城市中,氣溫最低的是( )
A.北京
B.上海
C.重慶
D.寧夏
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b的圖象與x軸、y軸分別交于點(diǎn)A、B,與一次函數(shù)y2=x的圖象交于點(diǎn)M,點(diǎn)A的坐標(biāo)為(6,0),點(diǎn)M的橫坐標(biāo)為2,過點(diǎn)P(a,0),作x軸的垂線,分別交函數(shù)y=kx+b和y=x的圖象于點(diǎn)C、D.
(1)求一次函數(shù)y1=kx+b的表達(dá)式;
(2)若點(diǎn)M是線段OD的中點(diǎn),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=4,C是⊙O上一點(diǎn),連接OC.過點(diǎn)C作CD⊥AB,垂足為D, 過點(diǎn)B作BM∥OC,在射線BM上取點(diǎn)E, 使BE=BD,連接CE.
(1) 當(dāng)∠COB=60° 時(shí),直接寫出陰影部分的面積;
(2) 求證:CE是 ⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是
A. a3·a2=a6 B. (x3)3=x6
C. x5+x5=x10 D. (-ab)5÷(-ab)2=-a3b3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com