【題目】如圖,已知拋物線與直線交于點(diǎn),.
求拋物線的解析式.
點(diǎn)是拋物線上、之間的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)分別作軸、軸的平行線與直線交于點(diǎn)、,以、為邊構(gòu)造矩形,設(shè)點(diǎn)的坐標(biāo)為,求,之間的關(guān)系式.
將射線繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)后與拋物線交于點(diǎn),求點(diǎn)的坐標(biāo).
【答案】 ; 、之間的關(guān)系式為; 點(diǎn)的坐標(biāo)為.
【解析】
(1)把點(diǎn)A的坐標(biāo)代入一次函數(shù)解析式求得a的值;然后把點(diǎn)A的坐標(biāo)代入二次函數(shù)解析式來(lái)求b的值即可;
(2)根據(jù)點(diǎn)D的坐標(biāo),可得出點(diǎn)E的坐標(biāo),點(diǎn)C的坐標(biāo),繼而確定點(diǎn)B的坐標(biāo),將點(diǎn)B的坐標(biāo)代入拋物線解析式可求出m,n之間的關(guān)系式;
(3)如圖2,作∠POA=45°,交拋物線與P,過(guò)P作PQ⊥OA于Q,過(guò)P作PM⊥x軸于M,過(guò)Q作QN⊥PM于N交y軸于R,構(gòu)建全等三角形△PNQ≌△QRO,結(jié)合全等三角形的對(duì)應(yīng)邊相等和二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征來(lái)求點(diǎn)P的坐標(biāo).
∵點(diǎn)在直線上,
∴,
解得:,
又∵點(diǎn)是拋物線上的一點(diǎn),
將點(diǎn)代入,可得,
∴拋物線解析式為;
如圖,∵直線的解析式為:,點(diǎn)的坐標(biāo)為,
∴點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,
∴點(diǎn)的坐標(biāo)為,
把點(diǎn)代入,可得,
∴、之間的關(guān)系式為;
如圖,作,交拋物線與,過(guò)作于,過(guò)作軸于,過(guò)作于交軸于,
則PQ=OQ,
則,
所以,,
設(shè)點(diǎn)為,則為,代入拋物線解析式得,
解得:,,
∵,
∴點(diǎn)的坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖中,AE⊥AB且AE=AB,BC⊥CD且BC=CD,若點(diǎn)E、B、D到直線AC的距離分別為6、3、2,則圖中實(shí)線所圍成的陰影部分面積S是( )
A.50B.44C.38D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】工廠接到訂單生產(chǎn)如圖所示的巧克力包裝盒子,每個(gè)盒子由3個(gè)長(zhǎng)方形側(cè)面和2個(gè)正三角形底面組成,倉(cāng)庫(kù)有甲、乙兩種規(guī)格的紙板共2600張,其中甲種規(guī)格的紙板剛好可以裁出4個(gè)側(cè)面(如圖①),乙種規(guī)格的紙板可以裁出3個(gè)底面和2個(gè)側(cè)面(如圖②),裁剪后邊角料(圖中陰影部分)不再利用.
(1)若裁剪出的側(cè)面和底面恰好全部用完,問(wèn)兩種規(guī)格的紙板各有多少?gòu)垼?/span>
(2)一共能生產(chǎn)多少個(gè)巧克力包裝盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把拋物線沿軸向右平移個(gè)單位后,再沿軸翻折得到拋物線稱為第一次操作,把拋物線沿軸向右平移個(gè)單位后,再沿軸翻折得到拋物線稱為第二次操作,…,以此類推,則拋物線經(jīng)過(guò)第此操作后得到的拋物線的解析式為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)
求出拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo);
在直角坐標(biāo)系中,直接畫出拋物線(注意:關(guān)鍵點(diǎn)要準(zhǔn)確,不必寫出畫圖象的過(guò)程);
根據(jù)圖象回答:
①取什么值時(shí),拋物線在軸的上方?
②取什么值時(shí),的值隨的值的增大而減?
根據(jù)圖象直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)B在線段CE上.
(感知)(1)如圖①,∠C=∠ABD=∠E=90°,易知△ACB∽△AED(不要求證明);
(拓展)(2)如圖②,△ACE中,AC=AE,且∠ABD=∠E,求證:△ACB∽△BED;
(應(yīng)用)(3)如圖③,△ACE為等邊三角形,且∠ABD=60°,AC=6,BC=2,則△ABD與△BDE的面積比為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如今通過(guò)微信朋友圈發(fā)布自己每天行走的步數(shù)已成為一種時(shí)尚.“健身達(dá)人”小張為了了解他的微信朋友圈里大家的運(yùn)動(dòng)情況,隨機(jī)抽取了部分好友進(jìn)行調(diào)查,把他們1月29日那天每人行走的步數(shù)情況分為五個(gè)類別:A(0~4000步)(說(shuō)明:0~4000表示大于或等于0,小于或等于4000,下同)、B(4001~8000步)、C(8001~12000步)、D(12001~16000步)、E(16000步以上),并將統(tǒng)計(jì)結(jié)果繪制了如圖1和2兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:
(1)小張隨機(jī)抽取了 名微信朋友圈好友;
(2)將圖1的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)已知小張的微信朋友圈里共300人,請(qǐng)根據(jù)本次抽查的結(jié)果,估計(jì)在它的微信朋友圈里1月29日那天行走不超過(guò)8000步的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,下列條件不能判定四邊形ABCD為平行四邊形的是( )
A.AB∥CD,AD∥BCB.OA=OC,OB=OD
C.AD=BC,AB∥CDD.AB=CD,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)坐標(biāo)分別為,,.
(1)在圖中畫出關(guān)于軸對(duì)稱的;
(2)通過(guò)平移,使移動(dòng)到原點(diǎn)的位置,畫出平移后的.
(3)在中有一點(diǎn),則經(jīng)過(guò)以上兩次變換后點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com