【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+3.其中正確的結(jié)論有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
【答案】C
【解析】
證明△BO′A≌△BOC,又∠OBO′=60°,所以△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到,故結(jié)論①正確;由△OBO′是等邊三角形,可知結(jié)論②正確;在△AOO′中,三邊長(zhǎng)為3,4,5,這是一組勾股數(shù),故△AOO′是直角三角形;進(jìn)而求得∠AOB=150°,故結(jié)論③正確;S四邊形AOBO′=S△AOO′+S△OBO′=×3×4+×42=6+4,故結(jié)論④錯(cuò)誤.
如圖,
由題意可知,∠1+∠2=∠3+∠2=60°,
∴∠1=∠3,
又∵OB=O′B,AB=BC,
∴△BO′A≌△BOC,
又∵∠OBO′=60°,
∴△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到,
故結(jié)論①正確;
如圖,連接OO′,
∵OB=O′B,且∠OBO′=60°,
∴△OBO′是等邊三角形,
∴OO′=OB=4,
故結(jié)論②正確;
∵△BO′A≌△BOC,
∴O′A=5,
在△AOO′中,三邊長(zhǎng)為3,4,5,這是一組勾股數(shù),
∴△AOO′是直角三角形,且∠AOO′=90°,
∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,
故結(jié)論③正確;
S四邊形AOBO′=S△AOO′+S△OBO′=×3×4+×42=6+4,
故結(jié)論④錯(cuò)誤;
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初一(1)班針對(duì)“你最喜愛的課外活動(dòng)項(xiàng)目”對(duì)全班學(xué)生進(jìn)行調(diào)查(每名學(xué)生分別選一個(gè)活動(dòng)項(xiàng)目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計(jì)表,繪制成扇形統(tǒng)計(jì)圖.
男、女生所選項(xiàng)目人數(shù)統(tǒng)計(jì)表
項(xiàng)目 | 男生(人數(shù)) | 女生(人數(shù)) |
機(jī)器人 | 7 | 9 |
3D打印 | m | 4 |
航模 | 2 | 2 |
其他 | 5 | n |
根據(jù)以上信息解決下列問題:
(1)m=_____,n=_____;
(2)扇形統(tǒng)計(jì)圖中機(jī)器人項(xiàng)目所對(duì)應(yīng)扇形的圓心角度數(shù)為_____°;
(3)從選航模項(xiàng)目的4名學(xué)生中隨機(jī)選取2名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請(qǐng)用列舉法(畫樹狀圖或列表)求所選取的2名學(xué)生中恰好有1名男生、1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列各題:
(1)2+(﹣1)=_____.
(2)﹣10+3=_____.
(3)(﹣2)×(﹣3)=_____.
(4)12÷(﹣3)=_____.
(5)(﹣3)2×=_____.
(6)1÷5×()=_____.
(7)﹣3a2+2a2=_____.
(8)﹣2(x﹣1)=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)23﹣6×(﹣3)+2×(﹣4);
(2)﹣1.53×0.75﹣0.53×();
(3)﹣14+|3﹣5|﹣16÷(﹣2)×
(4)﹣14+×[2×(﹣6)﹣(﹣4)2].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC中,D為邊AC上一點(diǎn).
(1)以BD為邊作等邊△BDE,連接CE,求證:AD=CE;
(2)如果以BD為斜邊作Rt△BDE,且∠BDE=30°,連接CE并延長(zhǎng),與AB的延長(zhǎng)線交于F點(diǎn),求證:AD=BF;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)報(bào)名次參加學(xué)校秋季運(yùn)動(dòng)會(huì),有以下5個(gè)項(xiàng)目可供選擇:徑賽項(xiàng)目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項(xiàng)目:跳遠(yuǎn),跳高(分別用T1、T2表示)
(1)該同學(xué)從5個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率P為___________;
(2)該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),求恰好是一個(gè)徑賽項(xiàng)目和一個(gè)田賽項(xiàng)目的概率P1,利用列表法或樹狀圖加以說明;
(3)該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),則兩個(gè)項(xiàng)目都是徑賽項(xiàng)目的概率P2為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】西安市某中學(xué)九年級(jí)組織了一次數(shù)學(xué)計(jì)算比賽(禁用計(jì)算器),每班選25名同學(xué)參加比賽,成績(jī)分為A,B,C,D四個(gè)等級(jí),其中A等級(jí)得分為100分,B等級(jí)得分為85分,C等級(jí)得分為75分,D等級(jí)得分為60分,數(shù)學(xué)教研組將九年級(jí)一班和二班的成績(jī)整理并繪制成如下的統(tǒng)計(jì)圖,請(qǐng)根據(jù)提供的信息解答下列問題.
(1)把一班競(jìng)賽成績(jī)統(tǒng)計(jì)圖補(bǔ)充完整.
(2)填表:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
一班 |
|
| 85 |
二班 | 84 | 75 |
|
(3)請(qǐng)從以下給出的兩個(gè)方面對(duì)這次比賽成績(jī)的結(jié)果進(jìn)行①?gòu)钠骄鶖?shù)、眾數(shù)方面來比較一班和二班的成績(jī);②從B級(jí)以上(包括B級(jí))的人數(shù)方面來比較一班和二班的成績(jī).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算或化簡(jiǎn):
(1)計(jì)算:(-2)×÷(-)×4+(- 2)3;
(2)計(jì)算:(-1)2019-(1-)÷3×[3-(-3)2];
(3)化簡(jiǎn):4a2- 2(a2- b2)- 3(a2+ b2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】任何一個(gè)正整數(shù)都可以寫成兩個(gè)正整數(shù)相乘的形式,我們把兩個(gè)乘數(shù)的差的絕對(duì)值最小的一種分解稱為正整數(shù)的最佳分解,并定義一個(gè)新運(yùn)算.例如:12=1×12=2×6=3×4,則.那么以下結(jié)論中:①F(2)=;②F(24)=;③若是一個(gè)完全平方效,則;④若是一個(gè)完全立方數(shù)(即,是正整數(shù)),則.正確的個(gè)數(shù)為( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com