判斷
17
-
15
15
-
13
的大小,正確的答案為( 。
A.
17
-
15
15
-
13
B.
17
-
15
15
-
13
C.
17
-
15
=
15
-
13
D.無法比較
1
17
-
15
=
17
+
15
2
,
1
15
-
13
=
15
+
13
2

17
+
15
15
+
13
,
1
17
-
15
1
15
-
13
,
17
-
15
15
-
13

故選:B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、我國古代把直角三角形中較短的直角邊稱為勾,較長的稱為股,斜邊稱為弦.并發(fā)現(xiàn)了“勾股定理”.若直角三角形三邊長都為正整數(shù),則稱為一組勾股數(shù),如“勾3股4弦5”.勾股數(shù)的尋找與判斷不是件很容易的事,不過還是有一些規(guī)律可循的.(以下n為正整數(shù),且n≥2)
(1)觀察:3、4、5;   5、12、13;  7、24、25;…,
小明發(fā)現(xiàn)這幾組勾股數(shù)的勾都是奇數(shù),從3起就沒有間斷過,且股和弦只相差1.小明根據(jù)發(fā)現(xiàn)的規(guī)律,推算出這一類的勾股數(shù)可以表示為:2n-1、2n(n-1)、2n(n-1)+1.請問:小明的這個結(jié)論正確嗎?
正確
.(直接回答正確或錯誤,不必證明)
(2)繼續(xù)觀察第一個數(shù)為偶數(shù)的情況:4、3、5;   6、8、10;   8、15、17;…,
親愛的同學(xué)們,你能像小明一樣發(fā)現(xiàn)每組勾股數(shù)中的其他兩邊長都有何規(guī)律嗎?若用2n表示第一個偶數(shù),請分別用n的代數(shù)式來表示其他兩邊,并證明確實是勾股數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

判斷
17
-
15
15
-
13
的大小,正確的答案為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

描述一組數(shù)據(jù)的離散程度,我們還可以用“平均差”.在一組數(shù)據(jù),…,中,各數(shù)據(jù)與它們的平均數(shù)的差的絕對值的平均數(shù),即

叫做這組數(shù)據(jù)的“平均差”.“平均差”也能描述一組數(shù)據(jù)的離散程度,“平均差”越大說明數(shù)據(jù)的離散程度越大.

(1)分別計算下列甲、乙兩個樣本數(shù)據(jù)的“平均差”,并根據(jù)計算結(jié)果判斷哪個樣本波動較大.

甲:

12,

13,

11,

15,

10,

16,

13,

14,

15,

11;

乙:

11,

16,

6,

14,

13,

19,

17,

8,

10,

16.

(2)分別計算甲、乙兩個樣本數(shù)據(jù)的方差和標(biāo)準(zhǔn)差,并根據(jù)計算結(jié)果判斷哪個樣本波動較大.

(3)以上的兩種方法判斷的結(jié)果是否一致?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我國古代把直角三角形中較短的直角邊稱為勾,較長的稱為股,斜邊稱為弦.并發(fā)現(xiàn)了“勾股定理”.若直角三角形三邊長都為正整數(shù),則稱為一組勾股數(shù),如“勾3股4弦5”.勾股數(shù)的尋找與判斷不是件很容易的事,不過還是有一些規(guī)律可循的.(以下n為正整數(shù),且n≥2)
(1)觀察:3、4、5;  5、12、13; 7、24、25;…,
小明發(fā)現(xiàn)這幾組勾股數(shù)的勾都是奇數(shù),從3起就沒有間斷過,且股和弦只相差1.小明根據(jù)發(fā)現(xiàn)的規(guī)律,推算出這一類的勾股數(shù)可以表示為:2n-1、2n(n-1)、2n(n-1)+1.請問:小明的這個結(jié)論正確嗎?
答______.(直接回答正確或錯誤,不必證明)
(2)繼續(xù)觀察第一個數(shù)為偶數(shù)的情況:4、3、5;  6、8、10;  8、15、17;…,
親愛的同學(xué)們,你能像小明一樣發(fā)現(xiàn)每組勾股數(shù)中的其他兩邊長都有何規(guī)律嗎?若用2n表示第一個偶數(shù),請分別用n的代數(shù)式來表示其他兩邊,并證明確實是勾股數(shù).

查看答案和解析>>

同步練習(xí)冊答案