【題目】如果拋物線y=(k1x2+9y軸左側(cè)的部分是上升的,那么k的取值范圍是_____

【答案】k1

【解析】

利用二次函數(shù)的性質(zhì)得到拋物線開口向下,則k10,然后解不等式即可.

解:∵拋物線y=(k1x2+9y軸左側(cè)的部分是上升的,

∴拋物線開口向下,

k10,

解得k1

故答案為:k1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在今年我市初中學業(yè)水平考試體育學科的女子800米耐力測試中,某考點同時起跑的小瑩和小梅所跑的路程S(米)與所用時間t(秒)之間的函數(shù)圖象分別為線段OA和折線OBCD,下列說法正確的是(

A.小瑩的速度隨時間的增大而增大

B.小梅的平均速度比小瑩的平均速度大

C.在起跑后180秒時,兩人相遇

D.在起跑后50秒時,小梅在小瑩的前面

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=AC,點F是BC延長線上一點,以CF為邊,作菱形CDEF,使菱形CDEF與點A在BC的同側(cè),連結BE,點G是BE的中點,連結AG、DG.

(1)如圖,當BAC=DCF=90°時,已知AC=3,CD=2,求AG的長度;

(2)如圖,當BAC=DCF=60°時,AG與DG有怎樣的位置和數(shù)量關系,并證明;

(3)當BAC=DCF=α時,試探究AG與DG的位置和數(shù)量關系(數(shù)量關系用含α的式子表達).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一個數(shù)值轉(zhuǎn)換機,原理如圖所示,若開始輸入的x的值是7,可發(fā)現(xiàn)第1次輸出的結果是12,第2次輸出的結果是6,…依次繼續(xù)下去

(1)請列式計算第3次到第8次的輸出結果;
(2)你根據(jù)(1)中所得的結果找到了規(guī)律嗎?計算2013次輸出的結果是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】南寧市青秀區(qū)新開發(fā)某工程準備招標,指揮部現(xiàn)接到甲、乙兩個工程隊的投標書,從投標書中得知:乙隊單獨完成這項工程所需天數(shù)是甲隊單獨完成這項工程所需天數(shù)的2倍;該工程若由甲隊先做6天,剩下的工程再由甲、乙兩隊合作16天可以完成.

(1)求甲、乙兩隊單獨完成這項工程各需要多少天?

(2)已知甲隊每天的施工費用為0.67萬元,乙隊每天的施工費用為0.33萬元,該工程預算的施工費用為19萬元.為縮短工期,擬安排甲、乙兩隊同時開工合作完成這項工程,問:該工程預算的施工費用是否夠用?若不夠用,需要追加預算多少萬元?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】多項式x3﹣2x+3__________項式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下列要求,解答相關問題.

(1)請補全以下求不等式﹣2x2﹣4x0的解集的過程.

①構造函數(shù),畫出圖象:根據(jù)不等式特征構造二次函數(shù)y=﹣2x2﹣4x;并在下面的坐標系中(圖1)畫出二次函數(shù)y=﹣2x2﹣4x的圖象(只畫出圖象即可).

②求得界點,標示所需,當y=0時,求得方程﹣2x2﹣4x=0的解為 ;并用鋸齒線標示出函數(shù)y=﹣2x2﹣4x圖象中y0的部分.

③借助圖象,寫出解集:由所標示圖象,可得不等式﹣2x2﹣4x0的解集為﹣2x0.請你利用上面求一元一次不等式解集的過程,求不等式x2﹣2x+14的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們已經(jīng)學習過了“等腰三角形的判定定理”,

1默寫等腰三角形的判定定理(寫成如果……那么……的形式):_______________________

該定理可以簡寫為:____________________

2)請你結合圖形,寫出已知、求證,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在長為a米,寬為b米的長方形地面上修兩條同樣寬的道路,余下的部分作為綠化地,路寬為x米.

(1)用代數(shù)式表示綠化地的面積.
(2)若a=63,b=43,x=3,綠化地每平方米為15元,道路每平方米150元,計算該工程需花費多少元?

查看答案和解析>>

同步練習冊答案