【題目】如圖,圓柱形玻璃杯,高為11cm,底面周長(zhǎng)為16cm,在杯內(nèi)離杯底3cm的點(diǎn)C處有一滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對(duì)的點(diǎn)A處,則螞蟻到達(dá)蜂蜜的最短距離為 . (結(jié)果保留根號(hào))

【答案】15cm
【解析】如圖,

將杯子側(cè)面展開,作A關(guān)于EF的對(duì)稱點(diǎn)A′,

連接A′C,則A′C即為最短距離,

A′C2=A′D2+CD2

=92+122

=225,

∴CA′=15cm

答:螞蟻到達(dá)蜂蜜的最短距離的是15cm.

所以答案是15cm.

【考點(diǎn)精析】本題主要考查了線段的基本性質(zhì)和圓柱的相關(guān)計(jì)算的相關(guān)知識(shí)點(diǎn),需要掌握線段公理:所有連接兩點(diǎn)的線中,線段最短.也可簡(jiǎn)單說成:兩點(diǎn)之間線段最短;連接兩點(diǎn)的線段的長(zhǎng)度,叫做這兩點(diǎn)的距離;線段的大小關(guān)系和它們的長(zhǎng)度的大小關(guān)系是一致的;圓柱的體積: V圓柱=πR2h才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要判斷一個(gè)學(xué)生的數(shù)學(xué)考試成績(jī)是否穩(wěn)定,那么需要知道他最近連續(xù)幾次數(shù)學(xué)考試成績(jī)的(
A.方差
B.平均數(shù)
C.中位數(shù)
D.眾數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算中,正確的是( 。

A.5a+3b8abB.4a3+2a26a5

C.8b27b21D.6ab26b2a0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題

(1)問題
如圖1,點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=a,AB=b.
填空:當(dāng)點(diǎn)A位于時(shí),線段AC的長(zhǎng)取得最大值,且最大值為(用含a,b的式子表示)
(2)應(yīng)用
點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=3,AB=1,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE.
①請(qǐng)找出圖中與BE相等的線段,并說明理由;
②直接寫出線段BE長(zhǎng)的最大值.
(3)拓展:如圖3,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(5,0),點(diǎn)P為線段AB外一動(dòng)點(diǎn),且PA=2,PM=PB,∠BPM=90,請(qǐng)直接寫出線段AM長(zhǎng)的最大值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各數(shù)中,不是無理數(shù)的是( )
A.
B.0.5
C.2π
D.0.151151115…(兩個(gè)5之間依次多1個(gè)1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中有三點(diǎn)A(﹣2,1)、B(3,1)、C(2,3).請(qǐng)回答如下問題:

(1)①在坐標(biāo)系內(nèi)描出點(diǎn)A、B、C的位置,并求△ABC的面積;②在平面直角坐標(biāo)系中畫出△A′B′C′,使它與△ABC關(guān)于x軸對(duì)稱,并寫出△A′B′C′三頂點(diǎn)的坐標(biāo);
(2)若M(x,y)是△ABC內(nèi)部任意一點(diǎn),請(qǐng)直接寫出這點(diǎn)在△A′B′C′內(nèi)部的對(duì)應(yīng)點(diǎn)M′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題是假命題的是 ( )

A. 四個(gè)角相等的四邊形是矩形 B. 對(duì)角線互相平分的四邊形是平行四邊形

C. 對(duì)角線垂直的四邊形是菱形 D. 對(duì)角線垂直且相等的平行四邊形是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,∠ABC=60°,AB=8cm,D是AB的中點(diǎn).現(xiàn)將△BCD沿BA方向平移1cm,得到△EFG,F(xiàn)G交AC于H,F(xiàn)E交AC于M點(diǎn).

(1)求證:AG=GH;
(2)求四邊形GHME的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:(x2+px+2)(x﹣1)的結(jié)果中不含x的二次項(xiàng),求p2017的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案