【題目】RtABC中,∠ACB=90°,AE,BD是角平分線,CMBDM,CNAEN,若AC=6,BC=8,則MN=_____

【答案】2.

【解析】

延長CMABG,延長CNABH,證明BMC≌△BMG,得到BG=BC=8,CM=MG,同理得到AH=AC=6,CN=NH,根據(jù)三角形中位線定理計(jì)算即可得出答案

如圖所示,延長CMABG,延長CNABH

∵∠ACB=90°,AC=6,BC=8,

∴由勾股定理得AB=10,

BMCBMG,

,

∴△BMC≌△BMG

BG=BC=8,CM=MG

AG=2,

同理,AH=AC=6,CN=NH,

GH=4,

CM=MG,CN=NH,

MN=GH=2.

故答案為:2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】感知:如圖,在菱形ABCD中,,點(diǎn)E、F分別在邊AB、AD,易知

探究:如圖,在菱形ABCD中,,點(diǎn)E、F分別在BA、AD的延長線上,是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說明理由.

拓展:如圖,在ABCD中,,點(diǎn)OAD邊的垂直平分線與BD的交點(diǎn),點(diǎn)E、F分別在OA、AD的延長線上,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABDE,1=2,試說明AEDC.下面是解答過程,請(qǐng)你填空或填寫理由.

解:∵ABDE(已知)∴∠1=     

又∵∠1=2 (已知)∴∠2=   (等量代換)

AEDC.(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E是AD上任意一點(diǎn).

(1)如圖1,連接BE、CE,問:BE=CE成立嗎?并說明理由;

(2)如圖2,若BAC=45°,BE的延長線與AC垂直相交于點(diǎn)F時(shí),問:EF=CF成立嗎?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AEBD于E,CFBD于F,連結(jié)AF,CE.求證:四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某車間有技術(shù)工人85人,平均每天每人可加工甲種部件16個(gè)或乙種部件10個(gè),2個(gè)甲種部件和3個(gè)乙種部件配成一套,問加工甲、乙兩種部件各安排多少人才能使每天加工的兩種部件剛好配套?并求出加工了多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上的點(diǎn)A表示的數(shù)為6,點(diǎn)B表示的數(shù)為﹣4,點(diǎn)C到點(diǎn)A、點(diǎn)B的距離相等,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為xx大于0)秒.

(1)點(diǎn)C表示的數(shù)是   ;

(2)當(dāng)x=   秒時(shí),點(diǎn)P到達(dá)點(diǎn)A處?

(3)運(yùn)動(dòng)過程中點(diǎn)P表示的數(shù)是   (用含字母x的式子表示);

(4)當(dāng)P,C之間的距離為2個(gè)單位長度時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點(diǎn)M從O出發(fā)以每秒2個(gè)單位長度的速度向A運(yùn)動(dòng);點(diǎn)N從B同時(shí)出發(fā),以每秒1個(gè)單位長度的速度向C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過點(diǎn)N作NP垂直x軸于點(diǎn)P,連接AC交NP于Q,連接MQ.

(1)點(diǎn)(填M或N)能到達(dá)終點(diǎn);
(2)求△AQM的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當(dāng)t為何值時(shí),S的值最大;

(3)是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系xOy中,把從點(diǎn)P出發(fā)沿縱或橫方向到達(dá)點(diǎn)Q(至多拐一次彎)的路徑長稱為P,Q實(shí)際距離.如圖,若P(﹣1,1),Q(2,3),則P,Q實(shí)際距離5,即PS+SQ=5PT+TQ=5.環(huán)保低碳的共享單車,正式成為市民出行喜歡的交通工具.設(shè)A,B,C三個(gè)小區(qū)的坐標(biāo)分別為A(3,1),B(5,﹣3),C(﹣1,﹣5),若點(diǎn)M表示單車停放點(diǎn),且滿足MA,B,C實(shí)際距離相等,則點(diǎn)M的坐標(biāo)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案