如圖,已知矩形ABCD中,AC與BD相交于O,DE平分∠ADC交BC于E,∠BDE=15°,則∠COE=________.

75°
分析:求出∠ADB,根據矩形性質求出OA=OC=OD=OB,得出等邊三角形ODC,推出DC=OE,CE=DC,求出CE=OE,求出∠COE=∠OEC和
∠OCB=30°,即可求出答案.
解答:∵四邊形ABCD是矩形,
∴AD∥BC,∠ADC=90°,
∵DE平分∠ADC,
∴∠ADE=∠CDE=∠ADC=45°,
∵∠BDE=15°,
∴∠ADB=∠ADE-∠BDE=30°,
∵AD∥BC,
∴∠ADB=∠DBC=30°,
∵四邊形ABCD是矩形,
∴OA=OC,OB=OD,AC=BD,
∴OA=OD=OB=OC,
∴∠OBC=∠OCB=30°,
∴∠DOC=∠OBC+∠OCB=60°,
∵OD=OC,
∴△ODC是等邊三角形,
∴DC=OC,
∵AD∥BC,
∴∠ADE=∠DEC,.
∵∠ADE=∠CDE,
∴∠DEC=∠CDE,
∴CE=DC,
∴CE=OC,
∴∠COE=∠OEC,
∵∠OCB=30°,
∴∠COE=(180°-∠OCE)=75°,
故答案為:75°.
點評:bnet綜合考察了矩形的性質,等腰三角形的性質和判定,等邊三角形的性質和判定,平行線的性質,三角形的內角和定理等知識點的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知矩形DEFG內接于Rt△ABC,D在AB上,E、F在BC上,G在AC上,∠BAC=90°,AB=6cm,AC=8cm,S矩形DEFG=
454
,則矩形的邊長DG=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知矩形ABCD中,AB=12cm,BC=6cm,點M沿AB方向從A向B以2cm/秒的速度移動,點N從D沿DA方向以1c精英家教網m/秒的速度移動,如果M、N兩點同時出發(fā),移動的時間為x秒(0≤x≤6).
(1)當x為何值時,△MAN為等腰直角三角形?
(2)當x為何值時,有△MAN∽△ABC?
(3)愛動腦筋的小紅同學在完成了以上聯(lián)系后,對該問題作了深入的研究,她認為:在M、N的移動過程中(N不與D、A重合,M不與A、B重合),以A、M、C、N為頂點的四邊形面積是一個常數(shù).她的這種想法對嗎?請說出理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知正三角形ABC的邊長AB是480毫米.一質點D從點B出發(fā),沿BA方向,以每秒鐘10毫米的速度向精英家教網點A運動.
(1)建立合適的直角坐標系,用運動時間t(秒)表示點D的坐標;
(2)過點D在三角形ABC的內部作一個矩形DEFG,其中EF在BC邊上,G在AC邊上.在圖中找出點D,使矩形DEFG是正方形(要求所表達的方式能體現(xiàn)出找點D的過程);
(3)過點D、B、C作平行四邊形,當t為何值時,由點C、B、D、F組成的平行四邊形的面積等于三角形ADC的面積,并求此時點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•寧德質檢)如圖,已知Rt△ABC,∠B=90°,AB=8,BC=6,把斜邊AC平均分成n段,以每段為對角線作邊與AB、BC平行的小矩形,則這些小矩形的面積和是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知矩形ABCD中AB:BC=3:1,點A、B在x軸上,直線y=mx+n(0<m<n<
1
2
),過點A、C交y軸于點E,S△AOE=
9
8
S矩形ABCD,拋物線y=ax2+bx+c過點A、B,且頂點G在直線y=mx+n上,拋物線與y軸交于點F.
(1)點A的坐標為
(-3n,0)
(-3n,0)
;B的坐標
(-n,0)
(-n,0)
(用n表示);
(2)abc=
-
4
9
-
4
9

查看答案和解析>>

同步練習冊答案