【題目】下面是小明設(shè)計的作一個以已知線段為對角線正方形的尺規(guī)作圖過程.

已知:線段AC

求證四邊形ABCD為正方形

作法:如圖,

作線段AC的垂直平分線MN AC于點(diǎn)O;

以點(diǎn)O為圓心CO長為半徑畫圓,交直線MN于點(diǎn)B,D

順次連接AB,BCCD,DA;

所以四邊形ABCD為所作正方形.

根據(jù)小明設(shè)計的尺規(guī)作圖過程,完成以下任務(wù).

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:∵OA=OB,OC=OD,

∴四邊形 ABCD為平行四邊形.(__________________)(填寫推理依據(jù))

OA=OB=OC=ODAC=BD

ABCD __________________)(填寫推理依據(jù)).

ACBD,

∴四邊形 ABCD為正方形(__________________________).(填寫推理依據(jù))

【答案】對角線互相平分的四邊形是平行四邊形,矩形,對角線相等且互相平分的四邊形是矩形

【解析】

1)根據(jù)作圖步驟畫出圖形即可;

2)根據(jù)對角線相等且互相平分的四邊形是矩形進(jìn)行判定即可.

1)作圖如下;

2)證明:∵OA=OBOC=OD,

∴四邊形 ABCD為平行四邊形.(__對角線互相平分的四邊形是平行四邊形__

OA=OB=OC=ODAC=BD

ABCD 矩形 __對角線相等且互相平分的四邊形是矩形__)(填寫推理依據(jù)).

ACBD,

∴四邊形 ABCD為正方形(___對角線互相垂直的矩形是正方形___).(填寫推理依據(jù))

故答案為:對角線互相平分的四邊形是平行四邊形;矩形;對角線相等且互相平分的四邊形是矩形;對角線互相垂直的矩形是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,ABBC=32,DAB=60°,E在AB上,且AEEB=12,F(xiàn)是BC的中點(diǎn),過D分別作DPAF于P,DQCE于Q,則DPDQ等于

A.34 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰RtABC中,AB=AC,∠BAC=,點(diǎn)A、B分別在x軸和y軸上,點(diǎn)C的坐標(biāo)為(6,2.

1)如圖1,求A點(diǎn)坐標(biāo);

2)如圖2,延長CA至點(diǎn)D,使得AD=AC,連接BD,線段BDx軸于點(diǎn)E,問:在x軸上是否存在點(diǎn)M,使得△BDM的面積等于△ABO的面積,若存在,求點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家支持大學(xué)生創(chuàng)新辦實(shí)業(yè),提供小額無息貸款,學(xué)生王亮享受國家政策貸款36000元用于代理某品牌服裝銷售,已知該店代理的品牌服裝的進(jìn)價為每件40元,該品牌服裝日銷售量y(件)與銷售價x(元/件)之間的關(guān)系可用圖中的一條線段(實(shí)線)來表示.該店應(yīng)支付員工的工資為每人每天82元,每天還應(yīng)支付其它費(fèi)用為106元(不包含貸款).

(1)求日銷售量y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系式;

(2)若該店暫不考慮償還貸款,當(dāng)某天的銷售價為48元/件時,當(dāng)天正好收支平衡(銷售額-成本=支出),求該店員工的人數(shù);

(3)若該店只有2名員工,則該店至少需要多少天能還清所有貸款?此時每件服裝的價格應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,動點(diǎn)P在線段AC上以5cm/s的速度從點(diǎn)A運(yùn)動到點(diǎn)C,過點(diǎn)P作PD⊥AB于點(diǎn)D,將△APD繞PD的中點(diǎn)旋轉(zhuǎn)180°得到△A′DP,設(shè)點(diǎn)P的運(yùn)動時間為x(s).

(1)當(dāng)點(diǎn)A′落在邊BC上時,求x的值;

(2)在動點(diǎn)P從點(diǎn)A運(yùn)動到點(diǎn)C過程中,當(dāng)x為何值時,△A′BC是以A′B為腰的等腰三角形;

(3)如圖(2),另有一動點(diǎn)Q與點(diǎn)P同時出發(fā),在線段BC上以5cm/s的速度從點(diǎn)B運(yùn)動到點(diǎn)C,過點(diǎn)Q作QE⊥AB于點(diǎn)E,將△BQE繞QE的中點(diǎn)旋轉(zhuǎn)180°得到△B′EQ,連結(jié)A′B′,當(dāng)直線A′B′與△ABC的一邊垂直時,求線段A′B′的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了促進(jìn)學(xué)生體育鍛煉,某校八年級進(jìn)行了體育測試,為了解女生體育測試情況,從中抽取了若干名女生的體育測試成績.

a.體育委員小李在整理頻數(shù)分布表時,不小心污染了統(tǒng)計表:

分組(分)

頻數(shù)

頻數(shù)

21x≤22

8

0.200

22x≤23

4

n

23x≤24

7

0.175

24x≤25

3

0.075

25x≤26

2

0.050

26x≤27

8

0.200

27x≤28

m

0.150

28x≤29

2

0.050

合計

b.根據(jù)頻數(shù)分布表,繪制如下頻數(shù)分布直方圖:

c.在此次測試中,共測試了800米,籃球,仰臥起坐,成績統(tǒng)計如下:

項(xiàng)目

平均分

中位數(shù)

眾數(shù)

800

8.27

8.5

8.5

仰臥起坐

7.61

8

7.5

籃球

8.69

9

8

根據(jù)以上信息,回答下列問題:

1)寫出表中m,n的值;

2)補(bǔ)全直方圖;

3)請結(jié)合C中統(tǒng)計圖表,給該校女生體育訓(xùn)練提供建議(至少從兩個不同的角度分析).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列解題過程,然后解答問題⑴、⑵,解方程:。

解:①當(dāng)3x0時,原方程可化為一元一次方程3x=1,它的解是;

②當(dāng)3x0時,原方程可化為一元一次方程-3x=1,它的解是。

⑴請你根據(jù)以上理解,解方程:;

⑵探究:當(dāng)b為何值時,方程,①無解;②只有一個解;③有兩個解。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:若關(guān)于x的一元一次方程ax=b的解為b+a,則稱該方程為“和解方程”. 例如:方程2x=﹣4的解為x=﹣2,而﹣2=﹣4+2,則方程2x=﹣4為“和解方程”.

請根據(jù)上述規(guī)定解答下列問題:

(1)已知關(guān)于x的一元一次方程3x=m是“和解方程”,求m的值;

(2)已知關(guān)于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上有A、B、C、D、O五個點(diǎn),點(diǎn)O為原點(diǎn),點(diǎn)C在數(shù)軸上表示的數(shù)是5,線段CD的長度為4個單位,線段AB的長度為2個單位,BC兩點(diǎn)之間的距離為11個單位,請解答下列問題

1點(diǎn)D在數(shù)軸上表示的數(shù)是 ,點(diǎn)A在數(shù)軸上表示的數(shù)是 ;

2若點(diǎn)B以每秒2個單位的速度向右勻速運(yùn)動t秒運(yùn)動到線段CD,BC的長度是3個單位,根據(jù)題意列出的方程是 ,解得t= ;

3若線段AB、CD同時從原來的位置出發(fā),線段AB以每秒2個單位的速度向右勻速運(yùn)動,線段CD以每秒3個單位的速度向左勻速運(yùn)動,把線段CD的中點(diǎn)記作P,請直接寫出,點(diǎn)P與線段AB的一個端點(diǎn)的距離為1.5個單位時運(yùn)動的時間

查看答案和解析>>

同步練習(xí)冊答案