四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是( )
A.AB∥DC,AD∥BC B.AD∥BC ∠ABC=∠ADC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在銳角△ABC中,∠A=60°,∠ACB=45°,以BC為弦作⊙O,交AC于點D,OD與BC交于點E,若AB與⊙O相切,則下列結(jié)論:
① =90°; ② DO∥AB; ③ CD=AD; ④△BDE∽△BCD; ⑤
正確的有( )
A.①②③ B.①④⑤ C.①②④⑤ D.①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,直線AB與x軸、y軸分別交于點A,B,直線CD與x軸、y軸分別交于點C,D,AB與CD相交于點E,線段OA,OC的長是一元二次方程x2﹣18x+72=0的兩根(OA>OC),BE=5,tan∠ABO=.
(1)求點A,C的坐標(biāo);
(2)若反比例函數(shù)y=的圖象經(jīng)過點E,求k的值;
(3)若點P在坐標(biāo)軸上,在平面內(nèi)是否存在一點Q,使以點C,E,P,Q為頂點的四邊形是矩形?若存在,請寫出滿足條件的點Q的個數(shù),并直接寫出位于x軸下方的點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=8cm.BC=4cm,CD=5cm.動點P從點B開始沿折線BC﹣CD﹣DA以1cm/s的速度運(yùn)動到點A.設(shè)點P運(yùn)動的時間為t(s),△PAB面積為S(cm2).
(1)當(dāng)t=2時,求S的值;
(2)當(dāng)點P在邊DA上運(yùn)動時,求S關(guān)于t的函數(shù)表達(dá)式;
(3)當(dāng)S=12時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列命題中 ①對角線相等且互相垂直的四邊形是菱形;②若,那么sinɑ>cosɑ③一正多邊形的一個外角是45°,則此圖形是正八邊形;④若式子有意義,則x>1;⑤在反比例函數(shù)中,若x>0 時,y隨x的增大而增大,則k的取值范圍是k>2;其中假命題有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,已知點A(﹣,0),B(,0),點C在坐標(biāo)軸上,且AC+BC=6,寫出滿足條件的所有點C的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
函數(shù)y=x2+bx+c與y=kx的圖象如圖所示,有以下結(jié)論:①b2﹣4c>0;②b+c+1=0;③2b+c<﹣2;④當(dāng)1<x<3時,x2+(b﹣k)x+c<0.其中正確的是( 。靖鶕(jù)2013年德州中考改編】
A①④ B②③ C③④ D①②
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com