【題目】如圖,□AOBC的頂點(diǎn)A、B、C在⊙O上,過(guò)點(diǎn)C作DE∥AB交OA延長(zhǎng)線于D點(diǎn),交OB延長(zhǎng)線于點(diǎn)E .
(1)求證:CE是⊙O的切線;
(2)若OA=1,求陰影部分面積.
【答案】(1)證明見(jiàn)解析;(2)S陰影=
【解析】試題分析:連接OC,由垂徑定理可知OC⊥AB,又DE∥AB,故OC⊥DE,因此可得CE是⊙O的切線;
(2)根據(jù)題意知ΔCOB是等邊三角形,分別求出S扇形COB和SΔCOB,相減即可求解.
試題解析:(1)連接OC,如圖,
∵四邊形AOBC是平行四邊形,
又OA=OB
∴平行四邊形AOBC是菱形
∴OC⊥AB
∵DE∥AB,
∴OC⊥DE
∴CE是⊙O的切線;
(2)∵四邊形AOBC是菱形
∴AO=BO=OC=CA
又OC=OB
∴ΔCOB是等邊三角形
∴∠COB=60°,
∴SΔCOB=
S扇形COB=
故S陰影= S扇形COB- SΔCOB=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,從邊長(zhǎng)為a的正方形紙片中剪去一個(gè)邊長(zhǎng)為b的小正方形,再沿著線段AB剪開(kāi),把剪成的兩張紙拼成如圖2的等腰梯形,
(1)設(shè)圖1中陰影部分面積為S1 , 圖2中陰影部分面積為S2 , 請(qǐng)直接用含a、b的代數(shù)式表示S1和S2;
(2)請(qǐng)寫出上述過(guò)程所揭示的乘法公式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,∠DOE=∠AOD,OF平分∠BOE,如果∠BOC=35°,那么∠EOF是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組數(shù),可以作為直角三角形的三邊長(zhǎng)的是( 。
A. 7,24,25 B. 5,13,15 C. 2,3,4 D. 8,12,20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,
(1)CD平分∠ACB,BE⊥CD,垂足E在CD的延長(zhǎng)線上,BE的延長(zhǎng)線交CA的延長(zhǎng)線于M,補(bǔ)全圖形,并探究BE和CD的數(shù)量關(guān)系,并說(shuō)明理由;
(2)若BC上有一動(dòng)點(diǎn)P,且∠BPQ= ∠ACB,BQ⊥PQ于Q,PQ交AB于F,試探究BQ和PF之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各點(diǎn)中,在第四象限的點(diǎn)是( )
A.(2,4)
B.(2,﹣4)
C.(﹣2,4)
D.(﹣2,﹣4)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com