閱讀材料:我們知道,若點A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點間的距離表示為AB.則AB=|a-b|.所以式子|x-3|的幾何意義是數(shù)軸上表示有理數(shù)3的點與表示有理數(shù)x的點之間的距離.根據(jù)上述材料,解答下列問題:
(1)若|x-3|=|x+1|,則x=
1
1

(2)式子|x-3|+|x+1|的最小值為
4
4
;
(3)請說出|x-3|+|x+1|=7所表示的幾何意義,并求出x的值.
分析:(1)根據(jù)絕對值的意義,可知|x-3|是數(shù)軸上表示數(shù)x的點與表示數(shù)3的點之間的距離,|x+1|是數(shù)軸上表示數(shù)x的點與表示數(shù)-1的點之間的距離,若|x-3|=|x+1|,則此點必在-1與3之間,故x-3<0,x+1>0,由此可得到關于x的方程,求出x的值即可;
(2)求|x-3|+|x+1|的最小值,由線段的性質,兩點之間,線段最短,可知當-1≤x≤3時,|x-3|+|x+1|有最小值.
(3)由于x-3及x+1的符號不能確定,故應分x>3,-1≤x≤3,x<-1三種情況解答.
解答:解:(1)根據(jù)絕對值的意義可知,此點必在-1與3之間,故x-3<0,x+1>0,
∴原式可化為3-x=x+1,
∴x=1;

(2)根據(jù)題意,可知當-1≤x≤3時,|x-3|+|x+1|有最小值.
∴|x-3|=3-x,|x+1|=x+1,
∴|x-3|+|x+1|=3-x+x+1=4;

(3)幾何意義:在數(shù)軸上與3和-1的距離和為7的點對應的x的值.
在數(shù)軸上3和-1的距離為4,則滿足方程的x的對應點在-1的左邊或3的右邊.
若x的對應點在-1的左邊,則x=-2.5;
若x的對應點在3的右邊,則x=4.5.
所以原方程的解是x=-2.5或x=4.5.
故答案為:1,4.
點評:本題考查的是絕對值的定義,解答此類問題時要用分類討論的思想.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:我們知道:點A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點之間的距離表示為AB,在數(shù)軸上A、B兩點之間的距離AB=|a-b|.所以式子|x-3|的幾何意義是數(shù)軸上表示有理數(shù)3的點與表示有理數(shù)x的點之間的距離.
根據(jù)上述材料,解答下列問題:
精英家教網(wǎng)
(1)若|x-3|=|x+1|,則x=
 
;
(2)式子|x-3|+|x+1|的最小值為
 
;
(3)若|x-3|+|x+1|=7,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2011•桃江縣模擬)閱讀材料:我們知道,有兩條邊相等的三角形叫做等腰三角形;類似地,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.
(1)如圖(1),O是等邊△ABC的內心,連接BO、CO并延長分別交AB、AC于點E、D,連接DE,求證:四邊形BCDE是等對邊四邊形;
(2)如圖(2),在不等邊△ABC中,點D、E分別是邊AB、AC上的點,DE≠BC,且滿足∠EBC=∠DCB=25°,若四邊形BCED是等對邊四邊形,求∠A的度數(shù).(提示:作BF⊥CD交CD的延長線于F,CG⊥BE于G)

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年浙江蘭溪柏社中學七年級上單元練習(一)數(shù)學試卷(帶解析) 題型:解答題

閱讀材料:我們知道|x|的幾何意義是在數(shù)軸上的數(shù)x對應的點與原點的距離,即|x|=|x-0|,也就是說|x|表示在數(shù)軸上數(shù)x與數(shù)0對應的點之間的距離。這個結論可以推廣為|x1-x2|表示在數(shù)軸上數(shù)x1與x2對應的點之間的距離。
例1:已知|x|=2,求x的值。
解:容易看出,在數(shù)軸上與原點的距離為2的點對應的數(shù)為-2和2,即x的值為-2和2。
例2:已知|x-1|=2,求x的值。
解:在數(shù)軸上與數(shù)1對應的點之間的距離為2的點對應的數(shù)為3和-1,即x的值為3和-1。
仿照閱讀材料的解法,求下列各式中的x的值。
(1)|x|=3                       (2)|x+2|=4

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年浙江蘭溪柏社中學七年級上單元練習(一)數(shù)學試卷(解析版) 題型:解答題

閱讀材料:我們知道|x|的幾何意義是在數(shù)軸上的數(shù)x對應的點與原點的距離,即|x|=|x-0|,也就是說|x|表示在數(shù)軸上數(shù)x與數(shù)0對應的點之間的距離。這個結論可以推廣為|x1-x2|表示在數(shù)軸上數(shù)x1與x2對應的點之間的距離。

例1:已知|x|=2,求x的值。

解:容易看出,在數(shù)軸上與原點的距離為2的點對應的數(shù)為-2和2,即x的值為-2和2。

例2:已知|x-1|=2,求x的值。

解:在數(shù)軸上與數(shù)1對應的點之間的距離為2的點對應的數(shù)為3和-1,即x的值為3和-1。

仿照閱讀材料的解法,求下列各式中的x的值。

(1)|x|=3                        (2)|x+2|=4

 

查看答案和解析>>

同步練習冊答案