【題目】下列說法正確的有( )
①兩條直線相交,交點(diǎn)叫垂足;
②在同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直;
③在同一平面內(nèi),一條直線有且只有一條垂線;
④在同一平面內(nèi),一條線段有無數(shù)條垂線;
⑤過一點(diǎn)可以向一條射線或線段所在的直線作垂線;
⑥若,則是的垂線,不是的垂線.
A.2個B.3個C.4個D.5個
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師請同學(xué)思考如下問題:如圖①,我們把一個四邊形的四邊中點(diǎn)依次連接起來得到的四邊形是平行四邊形嗎?
小敏在思考問題,有如下思路:連接.
結(jié)合小敏的思路作答.
(1)若只改變圖①中四邊形的形狀(如圖②),則四邊形還是平行四邊形嗎?說明理由;
(參考小敏思考問題方法)
(2)如圖②,在(1)的條件下,若連接.
①當(dāng)與滿足什么條件時,四邊形是矩形,寫出結(jié)論并證明;
②當(dāng)與滿足____時,四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個三角形中,如果一個角是另一個角的3倍,這樣的三角形我們稱之為“培圣三角形”,如:三個內(nèi)角分別為120、 40、 20的三角形是“培圣三角形”.如圖, MON 60,在射線OM 上找一點(diǎn) A ,過點(diǎn) A 作 AB OM 交ON 于點(diǎn) B ,以 A 為端點(diǎn)作射線 AD , 交線段OB 于點(diǎn)C (規(guī)定0 OAC 90 ).
(1) ABO 的度數(shù)為_____, AOB____(填“是”或“不是”)培圣三角形;
(2)若BAC 60,求證: AOC 為“培圣三角形”;
(3)當(dāng)ABC 為“培圣三角形”時,求OAC 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D,則下列說法中正確的個數(shù)是
①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的中垂線上;④S△DAC:S△ABC=1:3.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是佳佳往小姨家打長途電話的幾次收費(fèi)標(biāo)準(zhǔn)記錄:
回答下列問題:
時間(分) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … |
電話費(fèi)(元) | 0.6 | 1.2 | 1.8 | 2.4 | 3.0 | 3.6 | 4.2 | … |
(1)上表反映了變量 和 之間的關(guān)系, 自變量是 ,因變量是 .
(2)幫助佳佳預(yù)測一下,如果她打電話用的時間是10分鐘,需要付 元電話費(fèi);
(3)請你寫出通話時間(分鐘)(為正整數(shù))與所要付的電話費(fèi)(元)之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)B的坐標(biāo)為(1,0).
(1)在圖1中畫出△ABC關(guān)于y軸對稱的△A1B1C1,直接寫出點(diǎn)C的對應(yīng)點(diǎn)C1的坐標(biāo).
(2)在圖2中,以點(diǎn)O為位似中心,將△ABC放大,使放大后的△A2B2C2與△ABC的對應(yīng)邊的比為2:1(畫出一種即可).直接寫出點(diǎn)C的對應(yīng)點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的三個頂點(diǎn)A,O,C在坐標(biāo)軸上,矩形的面積為12,對角線AC所在直線的解析式為y=kx-4k(k≠0).
(1)求A,C的坐標(biāo);
(2)若D為AC中點(diǎn),過D的直線交y軸負(fù)半軸于E,交BC于F,且OE=1,求直線EF的解析式;
(3)在(2)的條件下,在坐標(biāo)平面內(nèi)是否存在一點(diǎn)G,使以C,D,F,G為頂點(diǎn)的四邊形為平行四邊形,若存在,請直接寫出點(diǎn)G的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 ,∠E=∠F=90°,∠B=∠C,AC=AB,給出下列結(jié)論:① ∠1=∠2;② BE=CF;③ △ACN≌△ABM;④ CD=DN,其中正確的結(jié)論有( )個
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),AB=4,AC⊥AB,BD⊥AB,AC=BD=3.點(diǎn) P 在線段 AB 上以 1的速度由點(diǎn) A 向點(diǎn) B 運(yùn)動,同時,點(diǎn) Q 在線段 BD 上由點(diǎn) B 向點(diǎn) D 運(yùn)動.它們運(yùn)動的時間為 (s).
(1)若點(diǎn) Q 的運(yùn)動速度與點(diǎn) P 的運(yùn)動速度相等,當(dāng)=1 時,△ACP 與△BPQ 是否全等,請說明理由, 并判斷此時線段 PC 和線段 PQ 的位置關(guān)系;
(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設(shè)點(diǎn) Q 的運(yùn)動速度為,是否存在實(shí)數(shù),使得△ACP 與△BPQ 全等?若存在,求出相應(yīng)的、的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com