【題目】 某公司有甲、乙兩類經(jīng)營收入,其中去年乙類收入為萬元,去年甲類收入是乙類收入的2倍,預(yù)計(jì)今年甲類年收入減少9%,乙類收入將增加19%.今年該公司的年總收入比去年增加__________萬元(用字母來表示).
【答案】
【解析】
設(shè)去年乙類收入為a,則甲類收入是2a;進(jìn)一步表示出預(yù)計(jì)今年甲類收入為(1-20%)×1.5a,乙類收入為(1+40%)a;分別算出兩年甲類、乙類兩種經(jīng)營總收入,進(jìn)一步比較得出答案.
設(shè)去年乙類收入為a,則甲類收入是2a,
去年甲類、乙類兩種經(jīng)營總收入為:a+2a=3a;
預(yù)計(jì)今年甲類年收入為(1-9%)×2a,B種年收入為(1+19%)a,
預(yù)計(jì)今年甲類、乙類兩種經(jīng)營總收入為:(1-9%)×2a+(1+19%)a=3.01a;
因?yàn)?/span>3.01a-3a=
∴今年該公司的年總收入比去年增加萬元
故填:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形紙片ABCD中,EF∥AB,M,N是線段EF的兩個(gè)動點(diǎn),且MN=EF,若把該正方形紙片卷成一個(gè)圓柱,使點(diǎn)A與點(diǎn)B重合,若底面圓的直徑為6cm,則正方形紙片上M,N兩點(diǎn)間的距離是____________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,動點(diǎn)P在線段AC上以5cm/s的速度從點(diǎn)A運(yùn)動到點(diǎn)C,過點(diǎn)P作PD⊥AB于點(diǎn)D,將△APD繞PD的中點(diǎn)旋轉(zhuǎn)180°得到△A′DP,設(shè)點(diǎn)P的運(yùn)動時(shí)間為x(s).
(1)當(dāng)點(diǎn)A′落在邊BC上時(shí),求x的值;
(2)在動點(diǎn)P從點(diǎn)A運(yùn)動到點(diǎn)C過程中,當(dāng)x為何值時(shí),△A′BC是以A′B為腰的等腰三角形;
(3)如圖(2),另有一動點(diǎn)Q與點(diǎn)P同時(shí)出發(fā),在線段BC上以5cm/s的速度從點(diǎn)B運(yùn)動到點(diǎn)C,過點(diǎn)Q作QE⊥AB于點(diǎn)E,將△BQE繞QE的中點(diǎn)旋轉(zhuǎn)180°得到△B′EQ,連結(jié)A′B′,當(dāng)直線A′B′與△ABC的一邊垂直時(shí),求線段A′B′的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,過點(diǎn)B作BE⊥CD于點(diǎn)E,點(diǎn)F在邊AB上,AF=CE,連接DF,CF.
(1)求證:四邊形DFBE是矩形;
(2)當(dāng)CF平分∠DCB時(shí),若CE=3,BE=4,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列解題過程,然后解答問題⑴、⑵,解方程:。
解:①當(dāng)3x≥0時(shí),原方程可化為一元一次方程3x=1,它的解是;
②當(dāng)3x≤0時(shí),原方程可化為一元一次方程-3x=1,它的解是。
⑴請你根據(jù)以上理解,解方程:;
⑵探究:當(dāng)b為何值時(shí),方程,①無解;②只有一個(gè)解;③有兩個(gè)解。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:一組鄰邊相等且對角互補(bǔ)的四邊形叫作“完美四邊形”.
(1)在①平行四邊形,②菱形,③矩形,④正方形中,一定為“完美”四邊形的是 (請?zhí)钚蛱枺?/span>
(2)在“完美”四邊形ABCD中,AB=AD,∠B+∠D=180°,連接AC.
①如圖1,求證:AC平分∠BCD;
小明通過觀察、實(shí)驗(yàn),提出以下兩種想法,證明AC平分∠BCD:
想法一:通過∠B+∠D=180°,可延長CB到E,使BE=CD,通過證明△AEB≌△ACD,從而可證AC平分∠BCD;
想法二:通過AB=AD,可將△ACD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使AD與AB重合,得到△AEB,可證C,B,E三點(diǎn)在條直線上,從而可證AC平分∠BCD.
請你參考上面的想法,幫助小明證明AC平分∠BCD;
②如圖2,當(dāng)∠BAD=90°,用等式表示線段AC,BC,CD之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B是數(shù)軸上的兩點(diǎn).點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位的速度向點(diǎn)B作勻速運(yùn)動;同時(shí),點(diǎn)Q也從原點(diǎn)出發(fā)用2s到達(dá)點(diǎn)A處,并在A處停留2s,然后按原速度向點(diǎn)B運(yùn)動,速度為每秒4個(gè)單位.最終,點(diǎn)Q比點(diǎn)P早2s到達(dá)B處.設(shè)點(diǎn)P運(yùn)動的時(shí)間為ts.
(1)點(diǎn)A表示的數(shù)為 ;當(dāng)t=4s時(shí),P、Q兩點(diǎn)之間的距離為 個(gè)單位長度;
(2)求點(diǎn)B表示的數(shù);
(3)從P、Q兩點(diǎn)同時(shí)出發(fā)至點(diǎn)P到達(dá)點(diǎn)B處的這段時(shí)間內(nèi),t為何值時(shí),P、Q兩點(diǎn)相距3個(gè)單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=8,點(diǎn)E是BC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,當(dāng)△CEB′為直角三角形時(shí),BE的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com