Rt△ABC中,已知∠C=90°,∠B=50°,點(diǎn)D在邊BC上,BD=2CD(如圖).把△ABC繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)m(0<m<180)度后,如果點(diǎn)B恰好落在初始Rt△ABC的邊上,那么m=   
【答案】分析:本題可以圖形的旋轉(zhuǎn)問(wèn)題轉(zhuǎn)化為點(diǎn)B繞D點(diǎn)逆時(shí)針旋轉(zhuǎn)的問(wèn)題,故可以D點(diǎn)為圓心,DB長(zhǎng)為半徑畫(huà)弧,第一次與原三角形交于斜邊AB上的一點(diǎn)B′,交直角邊AC于B″,此時(shí)DB′=DB,DB″=DB=2CD,由等腰三角形的性質(zhì)求旋轉(zhuǎn)角∠BDB′的度數(shù),在Rt△B″CD中,解直角三角形求∠CDB″,可得旋轉(zhuǎn)角∠BDB″的度數(shù).
解答:解:如圖,在線段AB取一點(diǎn)B′,使DB=DB′,在線段AC取一點(diǎn)B″,使DB=DB″,
∴①旋轉(zhuǎn)角m=∠BDB′=180°-∠DB′B-∠B=180°-2∠B=80°,
②在Rt△B″CD中,∵DB″=DB=2CD,∴∠CDB″=60°,
旋轉(zhuǎn)角∠BDB″=180°-∠CDB″=120°.
故答案為:80°或120°.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì).關(guān)鍵是將圖形的旋轉(zhuǎn)轉(zhuǎn)化為點(diǎn)的旋轉(zhuǎn),求旋轉(zhuǎn)角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在Rt△ABC中,已知∠B=90°,AB=6,BC=8,D,E,F(xiàn)分別是三邊AB,BC,CA上的點(diǎn),則DE+EF+FD的最小值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,已知∠ABC=90°,BC=8,以AB為直徑作⊙O,連接OC,過(guò)點(diǎn)C作⊙O的切線CD,D為切點(diǎn),連接OD.
(1)求證:△OBC≌△ODC;
(2)若sin∠OCD=
35
,求直徑AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,已知直角邊AC是另一直角邊BC的2倍,則tanA的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,已知tanB=2,則sinA的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,正確的有(  )
①Rt△ABC中,已知兩邊長(zhǎng)分別為3和4,則第三邊長(zhǎng)為5;
②有一個(gè)內(nèi)角等于其他兩個(gè)內(nèi)角和的三角形是直角三角形;
③三角形的三邊分別為a,b,C,若a2+c2-b2,那么∠C=90°;
④若△ABC中,∠A:∠B:∠C=1:5:6,則△ABC是直角三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案