【題目】如圖,圓桌周圍有20個箱子,按順時(shí)針方向編號1~20,小明先在1號箱子中丟入一顆紅球,然后沿著圓桌按順時(shí)針方向行走,每經(jīng)過一個箱子丟一顆球,規(guī)則如下
①若前一個箱子丟紅球,則下一個箱子就丟綠球.
②若前一個箱子丟綠球,則下一個箱子就丟白球.
③若前一個箱子丟白球,則下一個箱子就丟紅球.他沿著圓周走了2020圈,求4號箱內(nèi)有_____顆紅球.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖平面直角坐標(biāo)系中,O(0,0),A(4,4 ),B(8,0).將△OAB沿直線CD折疊,使點(diǎn)A恰好落在線段OB上的點(diǎn)E處,若OE=,則CE:DE的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.
(1)如圖1,若∠DAC=2∠ABC,AC=BC,四邊形ABCD是平行四邊形,則∠ABC= ;
(2)如圖2,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4.求BD的長;
(3)如圖3,若∠ABC=30°,∠ACD=45°,AC=2,B、D之間距離是否有最大值?如有求出最大值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用無刻度的直尺和圓規(guī)作出符合要求的圖形.(注:不要求寫作法,但保留作圖痕跡)
(1)如圖,已知線段AB,作一個△ABC,使得∠ACB=90°;(只需畫一個即可)
(2)如圖,已知線段MN,作一個△MPN,使得∠MPN=90°且sinM=.(只需畫一個即可)
(1) (2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在國慶節(jié)社會實(shí)踐活動中,鹽城某校甲、乙、丙三位同學(xué)一起調(diào)查了高峰時(shí)段鹽靖高速、鹽洛高速和沈海高速的車流量(每小時(shí)通過觀測點(diǎn)的汽車車輛數(shù)),三位同學(xué)匯報(bào)高峰時(shí)段的車流量情況如下:
甲同學(xué)說:“鹽靖高速車流量為每小時(shí)2000輛.”
乙同學(xué)說:“沈海高速的車流量比鹽洛高速的車流量每小時(shí)多400輛.”
丙同學(xué)說:“鹽洛高速車流量的5倍與沈海高速車流量的差是鹽靖高速車流量的2倍.”
請你根據(jù)他們所提供的信息,求出高峰時(shí)段鹽洛高速和沈海高速的車流量分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形OABC的三個頂點(diǎn)A、B、C在以O為圓心的半圓上,過點(diǎn)C作CD⊥AB,分別交AB、AO的延長線于點(diǎn)D、E,AE交半圓O于點(diǎn)F,連接CF.
(1)判斷直線DE與半圓O的位置關(guān)系,并說明理由;
(2)①求證:CF=OC;
②若半圓O的半徑為12,求陰影部分的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,邊長為1的正方形ABCD中,AC 、DB交于點(diǎn)H.DE平分∠ADB,交AC于點(diǎn)E.聯(lián)結(jié)BE并延長,交邊AD于點(diǎn)F.
(1)求證:DC=EC;
(2)求△EAF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖1,在△ABC和△ADE中,AB=AC=AD=AE,當(dāng)∠BAC+∠DAE=180°時(shí),我們稱△ABC與△DAE互為“頂補(bǔ)等腰三角形”,△ABC的邊BC上的高線AM叫做△ADE的“頂心距”,△ADE的邊DE上的高線AN叫做△ABC的“頂心距”,點(diǎn)A叫做“頂補(bǔ)中心”.
特例感知
(1)圖2,圖3中,△ABC與△DAE互為“頂補(bǔ)等腰三角形”,AM,AN是“頂心距”,
①如圖2,當(dāng)∠BAC=90°時(shí),AM與DE之間的數(shù)量關(guān)系為AM=_________DE,
②如圖3,當(dāng)∠BAC=120°,BC=6時(shí),AN的長為_________,
猜想論證
(2)在圖1中,當(dāng)∠BAC為任意角時(shí),猜想AM與DE之間的數(shù)量關(guān)系,并給予證明.
拓展應(yīng)用
(3)如圖4,在四邊形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,CD=2,在四邊形|ABCD的內(nèi)部是否存在點(diǎn)P,使 得△PAD與△PBC互為“頂補(bǔ)等腰三角形”?若存在,請給予證明,并求△PBC的“頂心距”的長;若不存在, 請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com