已知:如圖,矩形DEFG內(nèi)接于△ABC,AH⊥BC于H,若AH=4cm,BC=12cm,ED:EF=1:2,則EF=________cm.

4.8
分析:先根據(jù)ED:EF=1:2設(shè)出ED=a,則EF=2a,再根據(jù)△AEF∽△ABC,利用相似三角形的性質(zhì)解答.
解答:本題中已知ED:EF=1:2,可以設(shè)ED=a,則EF=2a,
根據(jù)條件AM=4-a,
由已知條件得到△AEF∽△ABC,

得到,
解得a=2.4,
則EF=4.8cm.
點評:本題考查對相似三角形性質(zhì)的理解,相似三角形對應(yīng)高的比等于相似比.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

22、已知:如圖,矩形ABCD的對角線AC與BD相交于點O,點O關(guān)于直線AD的對稱點是E,連接AE、DE.
(1)試判斷四邊形AODE的形狀,不必說明理由;
(2)請你連接EB、EC,并證明EB=EC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(1)閱讀下列材料,補全證明過程:
已知:如圖,矩形ABCD中,AC、BD相交于點O,OE⊥BC于E,連接DE交OC于點F,作FG⊥BC于G.求證:點G是線段BC的一個三等分點.
精英家教網(wǎng)
證明:在矩形ABCD中,OE⊥BC,DC⊥BC,
∴OE∥DC,∵
OE
DC
=
1
2
,∴
EF
FD
=
OE
DC
=
1
2
EF
ED
=
1
3
.…
(2)請你仿照(1)的畫法,在原圖上畫出BC的一個四等分點(要求保留畫圖痕跡,可不寫畫法及證明過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,矩形ABCD中,AB=5,AD=3,E是CD上一點(不與C、D重合),連接AE,過點B作BF⊥AE,垂足為F.
(1)若DE=2,求cos∠ABF的值;
(2)設(shè)AE=x,BF=y,①求y關(guān)于x之間的函數(shù)關(guān)系式,寫出自變量x的取值范圍;②問當點E從D運動到C,BF的值在增大還是減小?并說明理由.
(3)當△AEB為等腰三角形時,求BF的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,矩形ABCD中,BC延長線上一點E滿足BE=BD,F(xiàn)是DE的中點,猜想∠AFC的度數(shù)并證明你的結(jié)論.
答:∠AFC=
90
°.
證明:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點,且AF=BE,連結(jié)DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習冊答案