根據(jù)二次函數(shù)y=ax2+bx+c(a≠0,a、b、c為常數(shù))得到一些對(duì)應(yīng)值,列表如下:
x 2.2 2.3 2.4 2.5
y -0.76 -0.11 0.56 1.25
判斷一元二次方程ax2+bx+c=0的一個(gè)解x1的范圍是( 。
分析:觀察表格可知,y隨x的值逐漸增大,ax2+bx+c的值在2.3~2.4之間由負(fù)到正,故可判斷ax2+bx+c=0時(shí),對(duì)應(yīng)的x的值在2.3~2.4之間.
解答:解:根據(jù)表格可知,ax2+bx+c=0時(shí),對(duì)應(yīng)的x的值在2.3~2.4之間.
故選C.
點(diǎn)評(píng):本題考查了二次函數(shù)圖象與一元二次方程的解之間的關(guān)系.關(guān)鍵是觀察表格,確定函數(shù)值由負(fù)到正時(shí),對(duì)應(yīng)的自變量取值范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•松北區(qū)一模)已知矩形ABCD的周長(zhǎng)為12,E、F、G、H為矩形ABCD的各邊中點(diǎn),若AB=x,四邊形EFGH的面積為y.
(1)請(qǐng)直接寫出y與x的函數(shù)關(guān)系式;
(2)根據(jù)(1)中的函數(shù)關(guān)系式,計(jì)算當(dāng)x為何值時(shí),y最大,并求出最大值.
(參考公式:當(dāng)x=-
b
2a
時(shí),二次函數(shù)y=ax+bx+c(a≠0)有最。ù螅┲
4ac-b2
4a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一元二次方程x2axa-2=0.

(1)求證:不論a為何實(shí)數(shù),此方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)設(shè)a<0,當(dāng)二次函數(shù)yx2axa-2的圖象與x軸的兩個(gè)交點(diǎn)的距離為時(shí),求出此二次函數(shù)的解析式;

(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于AB兩點(diǎn),在函數(shù)圖象上是否存在點(diǎn)P,使得△PAB的面積為,若存在求出P點(diǎn)坐標(biāo),若不存在請(qǐng)說明理由.

【解析】(1)判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號(hào)就可以了,(2)根據(jù)二次函數(shù)圖象與x軸的兩個(gè)交點(diǎn)的距離公式解答即可.(3)是二次函數(shù)綜合應(yīng)用問題和三角形的綜合應(yīng)用

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆黑龍江省哈爾濱市松北區(qū)九年級(jí)升學(xué)調(diào)研測(cè)試(一)數(shù)學(xué)試卷(帶解析) 題型:解答題

已知矩形ABCD的周長(zhǎng)為12,E、F、G、H為矩形ABCD的各邊中點(diǎn),若AB=x,四邊形EFGH的面積為y.

(1)請(qǐng)直接寫出y與x的函數(shù)關(guān)系式;
(2)根據(jù)(1)中的函數(shù)關(guān)系式,計(jì)算當(dāng)x為何值時(shí),y最大,并求出最大值.
(參考公式:當(dāng)x=-時(shí),二次函數(shù)y=ax+bx+c(a≠o)有最小(大)值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省哈爾濱市松北區(qū)九年級(jí)升學(xué)調(diào)研測(cè)試(一)數(shù)學(xué)試卷(解析版) 題型:解答題

已知矩形ABCD的周長(zhǎng)為12,E、F、G、H為矩形ABCD的各邊中點(diǎn),若AB=x,四邊形EFGH的面積為y.

(1)請(qǐng)直接寫出y與x的函數(shù)關(guān)系式;

(2)根據(jù)(1)中的函數(shù)關(guān)系式,計(jì)算當(dāng)x為何值時(shí),y最大,并求出最大值.

(參考公式:當(dāng)x=-時(shí),二次函數(shù)y=ax+bx+c(a≠o)有最小(大)值

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆北京市西城區(qū)九年級(jí)一模數(shù)學(xué)卷(解析版) 題型:解答題

已知一元二次方程x2axa-2=0.

(1)求證:不論a為何實(shí)數(shù),此方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)設(shè)a<0,當(dāng)二次函數(shù)yx2axa-2的圖象與x軸的兩個(gè)交點(diǎn)的距離為時(shí),求出此二次函數(shù)的解析式;

(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點(diǎn),在函數(shù)圖象上是否存在點(diǎn)P,使得△PAB的面積為,若存在求出P點(diǎn)坐標(biāo),若不存在請(qǐng)說明理由.

【解析】(1)判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號(hào)就可以了,(2)根據(jù)二次函數(shù)圖象與x軸的兩個(gè)交點(diǎn)的距離公式解答即可.(3)是二次函數(shù)綜合應(yīng)用問題和三角形的綜合應(yīng)用

 

查看答案和解析>>

同步練習(xí)冊(cè)答案