【題目】在直角坐標(biāo)系中,直線經(jīng)過點(2,3)和(-1,-3),直線經(jīng)過原點,且與直線交于點P(-2,a).

(1)求a的值.

(2)(-2,a)可看成怎樣的二元一次方程組的解?

(3)設(shè)直線與x軸交于點A,你能求出△APO的面積嗎?

【答案】(1)a=-5;(2);(3).

【解析】試題分析:(1)首先利用待定系數(shù)法求得直線的解析式,然后直接把P點坐標(biāo)代入可求出a的值;
(2)利用待定系數(shù)法確定L2得解析式,由于P(-2,a)是L1L2的交點,所以點(-2,-5)可以看作是解二元一次方程組所得;
(3)先確定A點坐標(biāo),然后根據(jù)三角形面積公式計算

試題解析:

1)解:設(shè) (2,3)(-1,-3)

k=2b=-1

:y=2x-1,

∵過點P(-2,a)

a=-2×2-1=-5

設(shè)l2y=mx且過點P(-2-5)

(-2,a)可看成二元一次方程組 的解;

3直線11x軸的交點坐標(biāo),即當(dāng)y=0時,x=0.5,

A0.5,0

OA=0.5

(-2a)可看成二元一次方程組 的解,

a=-5,

PFx軸,

PF5

SPOA.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,B=90°,AB=8cm,BC=6cm。

(1)若P、Q是ABC邊上的兩個動點,其中點P從A沿AB方向運動,速度為每秒1cm,點Q從B沿BC方向運動,速度為每秒2cm,兩點同時出發(fā),設(shè)出發(fā)時間為t秒.當(dāng)t=1秒時,求PQ的長;從出發(fā)幾秒鐘后,PQB是等腰三角形?

(2)若M在ABC邊上沿BAC方向以每秒3cm的速度運動,則當(dāng)點M在邊CA上運動時,求BCM成為等腰三角形時M運動的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請認(rèn)真觀察圖形,解答下列問題:

(1)根據(jù)圖中條件,用兩種方法表示兩個陰影圖形的面積的和(只需表示,不必化簡);

(2)由(1),你能得到怎樣的等量關(guān)系?請用等式表示;

(3)如果圖中的a,b(a>b)滿足a2+b2=53,ab=14,求:的值;ab的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若(x﹣3)2+|x﹣y+m|=0,當(dāng)y>0時,則m的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校12名學(xué)生參加區(qū)級詩詞大賽,他們得分情況如下表所示:

分?jǐn)?shù)

87

88

90

93

97

人數(shù)

2

3

4

2

1

則這12名學(xué)生所得分?jǐn)?shù)的眾數(shù)是_____分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,BD是一條對角線,點P在CD上(與點C,D不重合),連接AP,平移△ADP,使點D移動到點C,得到△BCQ,過點Q作QM⊥BD于M,連接AM,PM(如圖1).

(1)判斷AM與PM的數(shù)量關(guān)系與位置關(guān)系并加以證明;

(2)若點P在線段CD的延長線上,其它條件不變(如圖2),(1)中的結(jié)論是否仍成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)有關(guān)測定,當(dāng)氣溫處于人體正常體溫(37℃)的黃金比值時,人體感到最舒適,則這個氣溫約為_________℃(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在研究圓的有關(guān)性質(zhì)時,我們曾做過這樣的一個操作將一張圓形紙片沿著它的任意一條直徑翻折,可以看到直徑兩側(cè)的兩個半圓互相重合.由此說明( 。

A. 圓是中心對稱圖形,圓心是它的對稱中心

B. 圓是軸對稱圖形,任意一條直徑所在的直線都是它的對稱軸

C. 圓的直徑互相平分

D. 垂直弦的直徑平分弦及弦所對的弧

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖、中,點E、D分別是正△ABC、正四邊形ABCM、正五邊形ABCMN中以C點為頂點的相鄰兩邊上的點,且BE=CD,DBAEP點.

1)分別求圖,圖和圖中,∠APD的度數(shù).

2)根據(jù)前面探索,你能否將本題推廣到一般的正n邊形情況?若能,寫出推廣問題和結(jié)論;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案