拋物線y=
12
x2+bx-2與x軸交于A、B兩點,與y軸交于C點,且A(-1,0).
(1)求拋物線的解析式及頂點D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論.
分析:(1)先把A點坐標(biāo)為(-1,0)代入拋物線y=
1
2
x2+bx-2即可求出b的值,進(jìn)而可求出拋物線的解析式,再由拋物線的頂點式即可求出其頂點坐標(biāo);
(2)由兩點間的距離公式分別求出AC,BC,AB的長,再根據(jù)勾股定理即可判斷出△ABC的形狀.
解答:精英家教網(wǎng)解:(1)A點坐標(biāo)為(-1,0)代入拋物線y=
1
2
x2+bx-2得,
0=
1
2
×(-1)2-b-2,解得b=-
3
2
,
∴原拋物線的解析式為:y=
1
2
x2-
3
2
x-2,
∴x=
3
2
,y=-
25
8

∴D點坐標(biāo)為:(
3
2
,-
25
8
);

(2)∵AC=
5
,BC=2
5
,AB=5,
∴AC2+BC2=AB2,
∴△ABC是直角三角形.
故答案為:y=
1
2
x2-
3
2
x-2,(
3
2
,-
25
8
),△ABC是直角三角形.
點評:本題考查了拋物線與x軸的交點問題及勾股定理的逆定理,熟知坐標(biāo)軸上各點坐標(biāo)的特點及兩點間的距離公式是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將拋物線y=-
1
2
x2
平移后經(jīng)過原點O和點A(6,0),平移后的拋物線的頂點為點B,對稱軸與拋物線y=-
1
2
x2
相交于點C,則圖中直線BC與兩條拋物線圍成的陰影部分的面積為
27
2
27
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•大豐市一模)在如圖的直角坐標(biāo)系中,已知點A(1,0);B(0,-2),將線段AB繞點A按逆時針方向旋轉(zhuǎn)90°至AC.
(1)求點C的坐標(biāo);
(2)若拋物線y=-
12
x2+ax+2經(jīng)過點C.
①求拋物線的解析式;
②在拋物線上是否存在點P(點C除外)使△ABP是以AB為直角邊的等腰直角三角形?若存在,求出所有點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=
1
2
x2+x+c
與x軸有兩個不同的交點.
(1)求c的取值范圍;
(2)拋物線y=
1
2
x2+x+c
與x軸兩交點的距離為2,求c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘭州)如圖,以扇形OAB的頂點O為原點,半徑OB所在的直線為x軸,建立平面直角坐標(biāo)系,點B的坐標(biāo)為(2,0),若拋物線y=
1
2
x2+k與扇形OAB的邊界總有兩個公共點,則實數(shù)k的取值范圍是
-2<k<
1
2
-2<k<
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

與拋物線y=-
1
2
x2+3x-5的形狀、開口方向都相同,只有位置不同的拋物線是( 。

查看答案和解析>>

同步練習(xí)冊答案