已知:如圖,正三角形ABC中,P為AB的中點(diǎn),Q為AC的中點(diǎn),R為BC的中點(diǎn),M為RC上任意一點(diǎn),△PMS為正三角形.求證:RM=QS.
證明:連接PR、PQ,∵P為AB的中點(diǎn),Q為AC的中點(diǎn),R為BC的中點(diǎn),
∴PQ=
1
2
BC,PR=
1
2
AC,
∴PQ=PR,
∵∠APQ=∠BPR=60°,
∴∠RPQ=180°-2×60°=60°,
又∵∠QPS=∠MPS-∠MPQ=60°-∠MPQ,
∠RPM=∠RPQ-∠MPQ=60°-∠MPQ,
∴∠QPS=∠RPM,
在△PRM與△PQS中,
PQ=PR
∠QPS=∠RPM
PS=PM
,
∴△PRM≌△PQS(SAS).
∴RM=QS.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,OA平分∠BAC,∠1=∠2.
求證:△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,P、Q是△ABC的邊BC上的兩點(diǎn),且BP=PQ=QC=AP=AQ,則∠ABC的大小等于______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

等邊三角形的面積為8
3
,它的高為(  )
A.2
2
B.4
3
C.2
6
D.2
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,一個(gè)等邊三角形紙片,剪去一個(gè)角后得到一個(gè)四邊形,則圖中∠α+∠β的度數(shù)是(  )
A.180°B.220°C.240°D.300°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法中,正確的是( 。
A.等邊三角形的“三線合一”
B.有一個(gè)角是60°的三角形是等邊三角形
C.在直角三角形中,直角邊等于斜邊的一半
D.有兩個(gè)角相等的三角形是等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,△ABC是等邊三角形,D、E分別是BC、CA上的點(diǎn),且BD=CE.
(1)求證:AD=BE;(2)求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,等邊三角形ABC中,AB=4,點(diǎn)P是AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P可以與點(diǎn)A重合,但不與點(diǎn)B重合),過點(diǎn)P作PE⊥BC,垂足為,過點(diǎn)E作EF⊥AC,垂足為F,過點(diǎn)F作FQ⊥AB,垂足為Q,設(shè)BP=x,AQ=y.
(1)寫出y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)當(dāng)BP的長(zhǎng)等于多少時(shí),點(diǎn)P與點(diǎn)Q重合;
(3)用x的代數(shù)式表示PQ的長(zhǎng)(不必寫出解題過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在邊長(zhǎng)為20cm的等邊三角形ABC紙片中,以頂點(diǎn)C為圓心,以此三角形的高為半徑畫弧分別交AC、BC于點(diǎn)D、E,則扇形CDE所圍的圓錐(不計(jì)接縫)的底圓半徑為( 。
A.
5
3
3
cm
B.
10
3
3
cm
C.5
3
cm
D.10
3
cm

查看答案和解析>>

同步練習(xí)冊(cè)答案