【題目】在矩形ABCD中,點(diǎn)P在AD上,AB=,AP=1.將直角尺的頂點(diǎn)放在P處,直角尺的兩邊分別交AB、BC于點(diǎn)E、F,連接EF(如圖1).當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)F恰好與點(diǎn)C重合(如圖2).將直角尺從圖2中的位置開始,繞點(diǎn)P順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E和點(diǎn)A重合時(shí)停止.在這個(gè)過程中,從開始到停止,線段EF的中點(diǎn)所經(jīng)過的路徑長為.
【答案】
【解析】
根據(jù)題意先利用相似三角形的判定與性質(zhì)求得圖2中PC的長,再設(shè)線段EF的中點(diǎn)為O,連接OP,OB,如圖1,證明得到O點(diǎn)在線段BP的垂直平分線上,然后如圖2,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)F與點(diǎn)C重合時(shí),EF的中點(diǎn)為BC的中點(diǎn)O,當(dāng)點(diǎn)E與點(diǎn),A重合時(shí),EF的中點(diǎn)為PB的中點(diǎn)O,得到OO′為△PBC的中位線,即OO′=PC.
解:如圖2,
在矩形ABCD中,∠A=∠D=90°,
∵AP=1,AB=,
∴PB==2,
∵∠ABP+∠APB=90°,∠BPC=90°,
∴∠APB+∠DPC=90°,
∴∠ABP=∠DPC,
∴△APB∽△DCP,
∴AP:CD=PB:CP,即1:=2:PC,
∴PC=2,
設(shè)線段EF的中點(diǎn)為O,連接OP,OB,如圖1,
在Rt△EPF中,OP=EF,
在Rt△EBF中,OB=EF,
∴OP=OB,
∴O點(diǎn)在線段BP的垂直平分線上,
如圖2,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)F與點(diǎn)C重合時(shí),EF的中點(diǎn)為BC的中點(diǎn)O,
當(dāng)點(diǎn)E與點(diǎn),A重合時(shí),EF的中點(diǎn)為PB的中點(diǎn)O,
∴OO′為△PBC的中位線,
∴OO′=PC=,
∴線段EF的中點(diǎn)經(jīng)過的路線長為.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,太陽光線與地面成角,一棵傾斜的大樹與地面成角,這時(shí)測得大樹在地面上的影長約為,則大樹的長約為________(保留兩個(gè)有效數(shù)字,下列數(shù)據(jù)供選用:,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,以線段為邊在第四象限內(nèi)作等邊三角形,點(diǎn)為正半軸上一動(dòng)點(diǎn), 連接,以線段為邊在第四象限內(nèi)作等邊三角形,連接并延長,交軸于點(diǎn).
(1)求證:≌;
(2)在點(diǎn)的運(yùn)動(dòng)過程中,的度數(shù)是否會(huì)變化?如果不變,請求出的度數(shù);如果變化,請說明理由.
(3)當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),以為頂點(diǎn)的三角形是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,,,把一條長為2016個(gè)單位長度且沒有彈性的細(xì)線線的粗細(xì)忽略不計(jì)的一端固定在點(diǎn)A處,并按的規(guī)律繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E在同一條直線上,連結(jié)BD,BE.以下四個(gè)結(jié)論:①BD=CE ;②BD⊥CE ;③∠ACE+∠DBC=45°; ④∠ACE=∠DBC ,其中結(jié)論正確的是____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在R△ABC中,∠ACB=90°,AC=6,BC=8,E為AC上一點(diǎn),且AE=,AD平分∠BAC交BC于D.若P是AD上的動(dòng)點(diǎn),則PC+PE的最小值等于( )
A.B.C.4D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,∠A=90°,E是AB上的一點(diǎn),且AD=BE,∠1=∠2.
(1)求證:△ADE≌△BEC;
(2)若AD=3,AB=9,求△ECD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D是邊AC上一點(diǎn),BC=BD=AD,則∠A的大小是( 。
A. 36° B. 54° C. 72° D. 30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為測量平地上一塊不規(guī)則區(qū)域(圖中的陰影部分)的面積,畫一個(gè)邊長為4m的正方形,使不規(guī)則區(qū)域落在正方形內(nèi).現(xiàn)向正方形內(nèi)隨機(jī)投擲小球(假設(shè)小球落在正方形內(nèi)每一點(diǎn)都是等可能的),經(jīng)過大量重復(fù)投擲試驗(yàn),發(fā)現(xiàn)小球落在不規(guī)則區(qū)域的頻率穩(wěn)定在常數(shù)0.65附近,由此可估計(jì)不規(guī)則區(qū)域的面積約為( )
A. 2.6m2 B. 5.6m2 C. 8.25m2 D. 10.4m2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com