【題目】如圖,點P、Q分別是邊長為4cm的等邊△ABC邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s,下面四個結論正確的有________________.
①BP=CM;②△ABQ≌△CAP;③∠CMQ的度數(shù)不變,始終等于60°;④當?shù)?/span>秒或第秒時,△PBQ為直角三角形.
【答案】②③④
【解析】∵點P、Q分別是邊長為4cm的等邊△ABC邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s,
∴AP=BQ,∠ABQ=∠CAP=60°,AB=CA,BP=CQ,
∴△ABQ≌△CAP.(即結論②成立);
∴∠BAQ=∠ACP,
∵∠CMQ=∠ACP+∠CAM,
∴∠CMQ=∠BAQ+∠CAM=∠CAP=60°.(即結論③成立);
又∵∠MQC>∠ABQ=60°,
∴∠MQC>∠CMQ,
∴MC>QC,即MC>BP.(即結論①不成立);
設t秒時,△BPQ是直角三角形,此時AP=BQ=t,BP=4-t,
(1)當∠PQB=90°,∵∠PBQ=60°,
∴∠BPQ=30°,
∴BQ=PB,即,解得: ;
(2)當∠QPB=90°時,∵∠PBQ=60°,
∴∠PQB=30°,
∴BP=BQ,即,解得: .
結合(1)、(2)可得:當或時,△BPQ是直角三角形.(即結論④成立);
綜上所述,正確的結論是:②③④.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點B(6,0)的直線AB與直線OA相交于點A(4,2),動點M沿路線O→A→C運動.
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)當△OMC的面積是△OAC的面積的時,求出這時點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB與x軸交于點A(1,0),與y軸交于點B(0,﹣2).
(1)求直線AB的解析式;
(2)若直線AB上的點C在第一象限,且S△BOC=2,求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有下列說法:
(1)無理數(shù)就是開方開不盡的數(shù);(2)無理數(shù)包括正無理數(shù)、零、負無理數(shù);
(3)無理數(shù)是無限不循環(huán)小數(shù);(4)無理數(shù)都可以用數(shù)軸上的點來表示.
其中正確的說法的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若點P(a,b)是第二象限內(nèi)的點,則點Q(b,a)在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com