【題目】如圖,O的弦ADBC,過點D的切線交BC的延長線于點EACDEBD于點H,DO及延長線分別交AC、BC于點G、F

(1)求證:DF垂直平分AC;

(2)求證:FCCE;

(3)若弦AD5cm,AC8cm,求O的半徑.

【答案】(1)詳見解析;(2)詳見解析;(3)

【解析】

1)由DE⊙O的切線,且DF過圓心O,可得DF⊥DE,又由AC∥DE,則DF⊥AC,進而可知DF垂直平分AC

2)可先證△AGD≌△CGF,四邊形ACED是平行四邊形,即可證明FC=CE;

3)連接AO可先求得AG=4cm,在Rt△AGD中,由勾股定理得GD=3cm;設圓的半徑為r,則AO=r,OG=r-3,在Rt△AOG中,由勾股定理可求得r=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】射線QN與等邊ABC的兩邊AB,BC分別交于點MN,且ACQN,AM=MB=2cm,QM=4cm.動點P從點Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經(jīng)過t秒,以點P為圓心,cm為半徑的圓與ABC的邊相切(切點在邊上),請寫出t可取的一切值 (單位:秒)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面內(nèi),C為線段AB外的一點,若以A,B,C為頂點的三角形為直角三角形,則稱C為線段AB的直角點. 特別地,當該三角形為等腰直角三角形時,稱C為線段AB的等腰直角點.

1)如圖1,在平面直角坐標系xOy中,點M的坐標為,在點P1,P2P3中,線段OM的直角點是 ;

2)在平面直角坐標系xOy中,點A,B的坐標分別為,直線l的解析式為

①如圖2C是直線l上的一個動點,若C是線段AB的直角點,求點C的坐標;

②如圖3P是直線l上的一個動點,將所有線段AP的等腰直角點稱為直線l關于點A的伴隨點.若⊙O的半徑為r,且⊙O上恰有兩個點為直線l關于點A的伴隨點,直接寫出r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表是二次函數(shù)yax2+bx+c的部分xy的對應值:

x

1

0

1

2

3

y

m

1

2

1

2

1)二次函數(shù)圖象的開口向 ,頂點坐標是 m的值為 ;

2)當x0時,y的取值范圍是

3)當拋物線yax2+bx+c的頂點在直線yx+n的下方時,n的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸為x=1,經(jīng)過點(-1,0),有下列結(jié)論:①abc0;②a+cb;③3a+c=0;④a+bmam+b)(其中m≠1)其中正確的結(jié)論有( 。

A. 1

B. 2

C. 3

D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2+mx+m﹣3=0.

(1)若該方程的一個根為2,求m的值及方程的另一個根;

(2)求證:不論m取何實數(shù),該方程都有兩個不相等的實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知關于x的一元二次方程x2+(2k+3)x+k2=0有兩個不相等的實數(shù)根x1,x2

(1)求k的取值范圍;

(2)若=﹣1,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線ykx2k4與拋物線yx 2

1)求證:直線與拋物線有兩個不同的交點;

2)設直線與拋物線分別交于A, B兩點.

①當k=-時,在直線AB下方的拋物線上求點P,使ABP的面積等于5;

②在拋物線上是否存在定點D使∠ADB90°,若存在,求點D到直線AB的最大距離. 若不存在,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖①,畫一條平行于BC的直線,使其將△ABC分成兩部分,且所分三角形與梯形面積比為1:3;

(2)如圖②,△ABCAB=4AC=3,BC=6,D是△ABCAC邊上的點,AD=2,過點D畫一條直線l將△ABC分成兩部分,l與△ABC另一邊的交點為點P,使其所分的一個三角形與△ABC相似,并求出DP的長;

(3)如圖③所示,在等腰△ABC中,CA=CB=10,AB=12.在△ABC中放入正方形DEMN和正方形EFPH,使得DE.EF在邊AB上,點P.N分別在邊CB.CA上,若較大正方形的邊長為a,請用含a的代數(shù)式表示較小正方形的邊長.

查看答案和解析>>

同步練習冊答案