(1) 如圖1,在正方形ABCD中,點(diǎn)E,F分別在邊BC,CD上,AE,BF交于點(diǎn)O,∠AOF=90°.求證:BE=CF.
(2) 如圖2,在正方形ABCD中,點(diǎn)E,H,F,G分別在邊AB,BC,CD,DA上,EF,GH交于點(diǎn)O,∠FOH=90°, EF=4.求GH的長(zhǎng).
(3) 已知點(diǎn)E,H,F,G分別在矩形ABCD的邊AB,BC,CD,DA上,EF,GH交于點(diǎn)O,∠FOH=90°,EF=4. 直接寫出下列兩題的答案:
①如圖3,矩形ABCD由2個(gè)全等的正方形組成,求GH的長(zhǎng);
②如圖4,矩形ABCD由n個(gè)全等的正方形組成,求GH的長(zhǎng)(用n的代數(shù)式表示).
(1) 證明:如圖1,
∵ 四邊形ABCD為正方形,
∴ AB=BC,∠ABC=∠BCD=90°,
∴ ∠EAB+∠AEB=90°.
∵ ∠EOB=∠AOF=90°,
∴ ∠FBC+∠AEB=90°,∴ ∠EAB=∠FBC,
∴ △ABE≌△BCF , ∴ BE=CF. ………………3分
(2) 解:如圖2,過點(diǎn)A作AM//GH交BC于M,
過點(diǎn)B作BN//EF交CD于N,AM與BN交于點(diǎn)O/,
則四邊形AMHG和四邊形BNFE均為平行四邊形,
∴ EF=BN,GH=AM,
∵ ∠FOH=90°, AM//GH,EF//BN, ∴ ∠NO/A=90°,
故由(1)得, △ABM≌△BCN, ∴ AM=BN,
∴ GH=EF=4. ………………6分
(3) ① 8.② 4n. ………………8分
【解析】(1)關(guān)鍵是證出∠CBF=∠BAE,可利用同角的余角相等得出,從而結(jié)合已知條件,利用SAS可證△ABE≌△BCF,于是BE=CF;
(2)過A作AM∥GH,交BC于M,過B作BN∥EF,交CD于N,AMBN交于點(diǎn)O′,利用平行四邊形的判定,可知四邊形AMHG和四邊形BNFE是▱,那么AM=GH,BN=EF,由于∠EOH=90°,結(jié)合平行線的性質(zhì),可知∠AO′N=90°,那么此題就轉(zhuǎn)化成(1),求△BCN≌△ABM即可;
(3)①若是兩個(gè)正方形,則GH=2EF=8;②若是n個(gè)正方形,那么GH=n•4=4n.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com