已知:在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A、C分別在軸、軸上,且∠ACB=90°,AC=BC.
(1)如圖1,當(dāng),點(diǎn)B在第四象限時(shí),則點(diǎn)B的坐標(biāo)為      
(2)如圖2,當(dāng)點(diǎn)C在軸正半軸上運(yùn)動(dòng),點(diǎn)A在軸正半軸上運(yùn)動(dòng),點(diǎn)B在第四象限時(shí),作BD⊥軸于點(diǎn)D,試判斷哪一個(gè)是定值,并說明定值是多少?請證明你的結(jié)論.

(1)點(diǎn)B的坐標(biāo)為(  3,-1 )    
(2)結(jié)論:      
證明:作BE⊥軸于E       

∴∠1=90º=∠2
∴∠3+∠4=90º
∵∠ACB=90º
∴∠5+∠3=90º
∴∠5=∠4
在△CEB和△AOC中

∴△CEB≌△AOC
∴AO=CE,   
∵BE⊥軸于E
∴BE∥
∵BD⊥軸于點(diǎn)D,EO⊥軸于點(diǎn)O
∴EO=BD   
∴OC-BD=OC-EO=CE=AO
      

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)xOy中,反比例函數(shù)y=
k
x
的圖象與y=
3
x
的圖象關(guān)于x軸對稱,又與直線y=ax+2交于點(diǎn)A(m,3).已知點(diǎn)M(-3,y1)、N(l,y2)和Q(3,y3)三點(diǎn)都在反比例函數(shù)y=
k
x
的圖象上. 
(l)比較y1、y2、y3的大小;
(2)試確定a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系里,如圖,已知直線:y=-x+3
2
交y軸于點(diǎn)A,交x軸于點(diǎn)B,三角板OCD如圖1置,其中∠D=30°,∠OCD=90°,OD=7,把三角板OCD繞點(diǎn).順時(shí)針旋轉(zhuǎn)15°,得到△OC1D1(如圖2),這時(shí)OC1交AB于點(diǎn)E,C1D1交AB于點(diǎn)F.
(1)求∠EFC1的度數(shù);
(2)求線段AD1的長;
(3)若把△OC1D1,繞點(diǎn)0順時(shí)針再旋轉(zhuǎn)30.得到△OC2D2,這時(shí)點(diǎn)B在△OC2D2的內(nèi)部、外部、還是邊上?證明你的判斷.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)中,已知點(diǎn)P(3-m,2m-4)在第一象限,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,已知直線y=kx+b與直線y=
1
2
x
平行,分別交x軸,y軸于A,B兩點(diǎn),且A點(diǎn)的橫坐標(biāo)是-4,以AB為邊在第二象限內(nèi)作矩形ABCD,使AD=
5

(1)求矩形ABCD的面積;
(2)過點(diǎn)D作DH⊥x軸,垂足為H,試求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為
y=-
6
x
y=-
6
x

查看答案和解析>>

同步練習(xí)冊答案