【題目】為了迎接疫情徹底結(jié)束后的購物高峰,某運(yùn)動(dòng)品牌專賣店準(zhǔn)備購進(jìn)甲、乙兩種運(yùn)動(dòng)鞋.其中甲、乙兩種運(yùn)動(dòng)鞋的進(jìn)價(jià)和售價(jià)如下表:
運(yùn)動(dòng)鞋價(jià)格 | 甲 | 乙 |
進(jìn)價(jià)(元/雙) | m | m﹣20 |
售價(jià)(元/雙) | 240 | 160 |
已知:用3000元購進(jìn)甲種運(yùn)動(dòng)鞋的數(shù)量與用2400元購進(jìn)乙種運(yùn)動(dòng)鞋的數(shù)量相同.
(1)求m的值;
(2)要使購進(jìn)的甲、乙兩種運(yùn)動(dòng)鞋共200雙的總利潤(利潤=售價(jià)﹣進(jìn)價(jià))不少于21700元,且甲種運(yùn)動(dòng)鞋的數(shù)量不超過100雙,問該專賣店共有幾種進(jìn)貨方案?
(3)在(2)的條件下,專賣店準(zhǔn)備對(duì)甲種運(yùn)動(dòng)鞋進(jìn)行優(yōu)惠促銷活動(dòng),決定對(duì)甲種運(yùn)動(dòng)鞋每雙優(yōu)惠a(50<a<70)元出售,乙種運(yùn)動(dòng)鞋價(jià)格不變.那么該專賣店要獲得最大利潤應(yīng)如何進(jìn)貨?
【答案】(1)m=100;(2)共有6種方案;(3)應(yīng)購進(jìn)甲種運(yùn)動(dòng)鞋95雙,購進(jìn)乙種運(yùn)動(dòng)鞋105雙.
【解析】
(1)用總價(jià)除以單價(jià)表示出購進(jìn)鞋的數(shù)量,根據(jù)兩種鞋的數(shù)量相等列出方程求解即可;
(2)設(shè)購進(jìn)甲種運(yùn)動(dòng)鞋x雙,表示出乙種運(yùn)動(dòng)鞋(200﹣x)雙,然后根據(jù)總利潤列出一元一次不等式組,求出不等式組的解集后,再根據(jù)鞋的雙數(shù)是正整數(shù)解答;
(3)設(shè)總利潤為W,根據(jù)總利潤等于兩種鞋的利潤之和列式整理,然后根據(jù)一次函數(shù)的增減性分情況討論求解即可.
解:(1)依題意得,
=,
整理得,3000(m﹣20)=2400m,
解得m=100,
經(jīng)檢驗(yàn),m=100是原分式方程的解,
所以,m=100;
(2)設(shè)購進(jìn)甲種運(yùn)動(dòng)鞋x雙,則乙種運(yùn)動(dòng)鞋(200﹣x)雙,
根據(jù)題意得,,
解得95≤x≤100,
∵x是正整數(shù),
100﹣95+1=6,
∴共有6種方案;
(3)設(shè)總利潤為W,則W=(240﹣100﹣a)x+80×(200﹣x)=(60﹣a)x+16000(95≤x≤100),
①當(dāng)50<a<60時(shí),60﹣a>0,W隨x的增大而增大,
所以,當(dāng)x=100時(shí),W有最大值,
即此時(shí)應(yīng)購進(jìn)甲種運(yùn)動(dòng)鞋100雙,購進(jìn)乙種運(yùn)動(dòng)鞋100雙;
②當(dāng)a=60時(shí),60﹣a=0,W=16000,(2)中所有方案獲利都一樣;
③當(dāng)60<a<70時(shí),60﹣a<0,W隨x的增大而減小,
所以,當(dāng)x=95時(shí),W有最大值,
即此時(shí)應(yīng)購進(jìn)甲種運(yùn)動(dòng)鞋95雙,購進(jìn)乙種運(yùn)動(dòng)鞋105雙.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AC=4,BC=2,點(diǎn)D在射線AB上,在構(gòu)成的圖形中,△ACD為等腰三角形,且存在兩個(gè)互為相似的三角形,則CD的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,AD=4,E為AB上一點(diǎn),AE=1,M為射線AD上一動(dòng)點(diǎn),AM=a(a為大于0的常數(shù)),直線EM與直線CD交于點(diǎn)F,過點(diǎn)M作MG⊥EM,交直線BC于G.
(1)若M為邊AD中點(diǎn),求證:△EFG是等腰三角形;
(2)若點(diǎn)G與點(diǎn)C重合,求線段MG的長;
(3)請(qǐng)用含a的代數(shù)式表示△EFG的面積S,并指出S的最小整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的20個(gè)小球,其中紅球6個(gè),黑球14個(gè)
(1)先從袋子中取出x(x>3)個(gè)紅球后,再從袋子中隨機(jī)摸出1個(gè)球,將“摸出黑球”,記為事件A.請(qǐng)完成下列表格.
事件A | 必然事件 | 隨機(jī)事件 |
x的值 |
(2)先從袋子中取出m個(gè)紅球,再放入2m個(gè)一樣的黑球并搖勻,隨機(jī)摸出1個(gè)球是黑球的概率是,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)D,且與邊BC交于點(diǎn)E,則點(diǎn)E的坐標(biāo)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜兔賽跑”是同學(xué)們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時(shí)間t的關(guān)系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是( )
A. 賽跑中,兔子共休息了50分鐘
B. 烏龜在這次比賽中的平均速度是0.1米/分鐘
C. 兔子比烏龜早到達(dá)終點(diǎn)10分鐘
D. 烏龜追上兔子用了20分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列高鐵列車從甲地勻速駛往乙地,一列特快列車從乙地勻速駛往甲地,兩車同時(shí)出發(fā),設(shè)特快列車行駛的時(shí)間為x(單位:時(shí)),特快列車與高鐵列車之間的距離為y(單位:千米),y與x之間的函數(shù)關(guān)系如圖所示,則圖中線段CD所表示的y與x之間的函數(shù)關(guān)系式是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生會(huì)為了解本校學(xué)生每天做作業(yè)所用的時(shí)間情況,采用問卷的方式對(duì)一部分學(xué)生進(jìn)行調(diào)查,在確定調(diào)查對(duì)象時(shí),大家提出以下幾種方案:
(A)對(duì)各班班長進(jìn)行調(diào)查;
(B)對(duì)某班的全體學(xué)生進(jìn)行調(diào)查;
(C)從全校每班隨機(jī)抽取5名學(xué)生進(jìn)行調(diào)查.
在問卷調(diào)查時(shí),每位被調(diào)查的學(xué)生都選擇了問卷中適合自己的一個(gè)時(shí)間,學(xué)生會(huì)收集到的數(shù)據(jù)整理后繪制成如圖所示的條形統(tǒng)計(jì)圖.
(1)為了使收集到的數(shù)據(jù)具有代表性,學(xué)生會(huì)在確定調(diào)查對(duì)象時(shí)選擇了方案____(填A或B或C);
(2)被調(diào)查的學(xué)生每天做作業(yè)所用的時(shí)間的眾數(shù)為_______小時(shí),中位數(shù)為______小時(shí);
(3)根據(jù)以上統(tǒng)計(jì)結(jié)果,估計(jì)該校800名學(xué)生中每天做作業(yè)時(shí)間用1.5小時(shí)的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com