【題目】在△ABC中,AC=4,BC=2,點D在射線AB上,在構(gòu)成的圖形中,△ACD為等腰三角形,且存在兩個互為相似的三角形,則CD的長是_____.
【答案】或2
【解析】
分兩種情形:①如圖1中,當(dāng)點D在線段AB上,DC=AD,且△BCD∽△BAC時,設(shè)CD=x,BD=y.②如圖2中,當(dāng)點D在AB的延長線上時,AC=AD=4,△DCB∽DAC.設(shè)CD=x,BD=y,分別構(gòu)建方程組求解.
①如圖1中,當(dāng)點D在線段AB上,DC=AD,且△BCD∽△BAC時,設(shè)CD=x,BD=y,
則有:,
∴,
解得:x=,y=,
∴CD=.
②如圖2中,當(dāng)點D在AB的延長線上時,AC=AD=4,△DCB∽DAC.設(shè)CD=x,BD=y,
則:,
∴,
解得x=2,y=1,
∴CD=2,
綜上所述,滿足條件的CD的值為或2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點A的坐標(biāo)為(﹣1,1),點B在x軸正半軸上,點D在第三象限的雙曲線y=上,過點C作CE∥x軸交雙曲線于點E,則CE的長為( )
A. B. C. 3.5D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象經(jīng)過點,過作軸于點.點為反比例函數(shù)圖象上的一動點,過點作軸于點,連接.直線與軸的負(fù)半軸交于點.
(1)求反比例函數(shù)的表達式;
(2)若,求的面積;
(3)是否存在點,使得四邊形為平行四邊形?若存在,請求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進、兩種商品,購買1個商品比購買1個商品多花10元,并且花費300元購買商品和花費100元購買商品的數(shù)量相等.
(1)求購買一個商品和一個商品各需要多少元;
(2)商店準(zhǔn)備購買、兩種商品共80個,若商品的數(shù)量不少于商品數(shù)量的4倍,并且購買、商品的總費用不低于1000元且不高于1050元,那么商店有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xOy中,半徑為1的⊙O與x軸正半軸和y軸正半軸分別交于A,B兩點,直線l:y=kx+2(k<0)與x軸和y軸分別交于P,M兩點.
(1)當(dāng)直線與⊙O相切時,求出點M的坐標(biāo)和點P的坐標(biāo);
(2)如圖2,當(dāng)點P在線段OA上時,直線1與⊙O交于E,F兩點(點E在點F的上方)過點F作FC∥x軸,與⊙O交于另一點C,連結(jié)EC交y軸于點D.
①如圖3,若點P與點A重合時,求OD的長并寫出解答過程;
②如圖2,若點P與點A不重合時,OD的長是否發(fā)生變化,若不發(fā)生變化,請求出OD的長并寫出解答過程;若發(fā)生變化,請說明理由.
(3)如圖4,在(2)的基礎(chǔ)上,連結(jié)BF,將線段BF繞點B逆時針旋轉(zhuǎn)90°到BQ,若點Q在CE的延長線時,請用等式直接表示線段FC,FQ之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點坐標(biāo)為軸上點,將線段繞著點順時針旋轉(zhuǎn)得到,過點作直線軸于,過點作直線于.
(1)當(dāng)點是的中點時,求直線的函數(shù)表達式.
(2)當(dāng)時,求的面積.
(3)在直線上是否存在點,使得?若存在,試用的代數(shù)式表示點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE.
(1)發(fā)現(xiàn):當(dāng)正方形AEFG繞點A旋轉(zhuǎn),如圖②所示.
①線段DG與BE之間的數(shù)量關(guān)系是 ;
②直線DG與直線BE之間的位置關(guān)系是 ;
(2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE時,上述結(jié)論是否成立,并說明理由.
(3)應(yīng)用:在(2)的情況下,連接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家醫(yī)保局相關(guān)負(fù)責(zé)人3月25日表示,2019年底前我國將實現(xiàn)生育保險基金并入職工基本醫(yī)療保險基金,統(tǒng)一征繳,就是通常所說的“五險變四險”.傳統(tǒng)的五險包括:養(yǎng)老保險、失業(yè)保險、醫(yī)療保險、工傷保險、生育保險.某單位從這五險中隨機抽取兩種,為員工提高保險比例,則正好抽中養(yǎng)老保險和醫(yī)療保險的概率是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接疫情徹底結(jié)束后的購物高峰,某運動品牌專賣店準(zhǔn)備購進甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進價和售價如下表:
運動鞋價格 | 甲 | 乙 |
進價(元/雙) | m | m﹣20 |
售價(元/雙) | 240 | 160 |
已知:用3000元購進甲種運動鞋的數(shù)量與用2400元購進乙種運動鞋的數(shù)量相同.
(1)求m的值;
(2)要使購進的甲、乙兩種運動鞋共200雙的總利潤(利潤=售價﹣進價)不少于21700元,且甲種運動鞋的數(shù)量不超過100雙,問該專賣店共有幾種進貨方案?
(3)在(2)的條件下,專賣店準(zhǔn)備對甲種運動鞋進行優(yōu)惠促銷活動,決定對甲種運動鞋每雙優(yōu)惠a(50<a<70)元出售,乙種運動鞋價格不變.那么該專賣店要獲得最大利潤應(yīng)如何進貨?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com