【題目】用圓規(guī)、直尺作圖,不寫作法,但要保留作圖痕跡.
已知:,為邊上的一點.
求作:點,使,且點到,的距離相等.
【答案】見解析
【解析】
以B點為圓心,任意長為半徑畫弧,與AB、BC相交于點E、F,再分別以E、F為圓心,大于線段EF的一半長為半徑畫弧,兩弧在內(nèi)交于點H,連接BH并延長,即BH是的角平分線,再以D為圓心,DB長為半徑畫弧,與BH交于點P,即點P為所求;
解:以B點為圓心,任意長為半徑畫弧,與AB、BC相交于點E、F,再分別以E、F為圓心,大于線段EF的一半長為半徑畫弧,兩弧在內(nèi)交于點H,連接BH并延長,即BH是的角平分線,再以D為圓心,DB長為半徑畫弧,與BH交于點P,
∵BH是的角平分線,
∴,
又∵DP=DB(同圓半徑相等),
∴,
∴(等量替換),
∴(內(nèi)錯角相等,兩直線平行),
又BH是的角平分線,
點到,的距離相等.
即點P為所求;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC,BD為四邊形ABCD的對角線,AC⊥BC,AB⊥AD,CA=CD.若tan∠BAC=.則tan∠DBC的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解2018年北京市乘坐地鐵的每個人的月均花費(fèi)情況,相關(guān)部門隨機(jī)調(diào)查了1000人乘坐地鐵的月均花費(fèi)(單位:元),繪制了如下頻數(shù)分布直方圖.根據(jù)圖中信息,下面3個推斷中,合理的是______.
①小明乘坐地鐵的月均花費(fèi)是75元,那么在所調(diào)查的1000人中至少有一半的人月均花費(fèi)超過小明;
②估計平均每人乘坐地鐵的月均花費(fèi)的范圍是60~120元;
③如果規(guī)定消費(fèi)達(dá)到一定數(shù)額可以享受折扣優(yōu)惠,并且享受折扣優(yōu)惠的人數(shù)控制在20%左右,那么乘坐地鐵的月均花費(fèi)達(dá)到120元的人可享受折扣.
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ABM=30°,AB=20,C是射線BM上一點.
(1)在下列條件中,可以唯一確定BC長的是 ;(填寫所有符合條件的序號)
①AC=13;②tan∠ACB=;③△ABC的面積為126.
(2)在(1)的答案中,選擇一個作為條件,畫出示意圖,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,直線與軸交于點,與軸交于點,拋物線經(jīng)過,兩點,與軸的另一交點為點.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點為直線下方拋物線上一動點.
①如圖2所示,直線交線段于點,求的最小值;
② 如圖3所示,連接過點作于,是否存在點,使得中的某個角恰好等于的2倍?若存在,求點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,.點從點出發(fā),沿向終點運(yùn)動,同時點從點出發(fā),沿射線運(yùn)動,它們的速度均為每秒5個單位長度,點到達(dá)終點時,、同時停止運(yùn)動.當(dāng)點不與點、重合時,過點作于點,連結(jié),以、為鄰邊作.設(shè)與重疊部分的面積為,運(yùn)動時間為秒.
(1)用含的代數(shù)式表示的長為________;
(2)是否存在某一時刻,使四邊形為矩形,若存在,求出的值;若不存在,請說明理由;
(3)時,求與的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與坐標(biāo)軸分別交于點、,其中有,,過拋物線對稱軸左側(cè)的一點做軸于點,點在上運(yùn)動,點是上的動點,連接,.
(1)求拋物線的解析式及點的坐標(biāo);
(2)求的最小值;
(3)點是對稱軸的左側(cè)拋物線上的一個點,當(dāng)時,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC.點D為BC中點,E為邊AB上一動點(不與A、B點重合),以點D為直角頂點、以射線DE為一邊作∠MDN=90°,另一條邊DN與邊AC交于點F.下列結(jié)論中正確結(jié)論是( )
①BE=AF;
②△DEF是等腰直角三角形;
③無論點E、F的位置如何,總有EF=DF+CF成立;
④四邊形AEDF的面積隨著點E、F的位置不同發(fā)生變化.
A.①③B.②③C.①②D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】龍蝦狂歡季再度開啟,第屆中國合肥龍蝦節(jié)的主題是“讓你知蝦,也知稻”,稻田小龍蝦養(yǎng)殖技術(shù)在合肥周邊的鄉(xiāng)鎮(zhèn)大力推廣,已知每千克小龍蝦養(yǎng)殖成本為元,在整個銷售旺季的天里,銷售單價元/千克,與時間(天)之間的函數(shù)關(guān)系式為:,日銷售量(千克)與時間第(天)之間的函數(shù)關(guān)系如圖所示:
(1)求日銷售量與時間的函數(shù)關(guān)系式?
(2)哪一天的日銷售利潤最大?最大利潤是多少?
(3)在實際銷售的前天中,該養(yǎng)殖戶決定銷售千克小龍蝦,就捐贈元給村里的特困戶,在這前天中,每天扣除捐贈后的日銷售利潤隨時間的增大而增大,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com