【題目】如圖,在ABC中,AC=BC=5, AB=6 DAC上一點,作DE//ABBC于點E,點C關于DE的對稱點為點O,以OA為半徑作⊙O恰好經過點C,并交直線DE于點MN.MN的值為__________.

【答案】

【解析】

連接CO并延長交ABF,交MNG,連接OA、OM,易得CFAB,利用垂徑定理求出AF,在RtAOF中,利用勾股定理求出半徑,然后可得OMOG的長,再利用勾股定理求出MG即可得到MN.

解:如圖,連接CO并延長交ABF,交MNG,連接OA、OM,

∵點C關于DE的對稱點為點O,

CFMN

DE//AB,

CFAB,

AC=BC=5 AB=6,

AF=BF=3

,

設半徑為r,則OF=4-r,

RtAOF中,OF2+AF2=OA2,即

解得:,

,

,

故答案為:.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)y=的圖象與性質.小美根據(jù)學習函數(shù)的經驗,對函數(shù)y=的圖象與性質進行了探究下面是小美的探究過程,請補充完整:

(1)函數(shù)y=的自變量x的取值范圍是 ;

(2)下表是y與x的幾組對應值.

x

-2

-1

1

2

3

4

y

0

-1

m

求m的值;

(3)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;

(4)結合函數(shù)的圖象,寫出該函數(shù)的一條性質: .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E為邊AD上的點,點F在邊CD上,且CF3FD,∠BEF90°

1)求證:△ABE∽△DEF;

2)若AB4,延長EFBC的延長線于點G,求BG的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果一元二次方程滿足a+b+c=0,我們稱這個方程為鳳凰方程.已知是鳳凰方程,且有兩個相等的實數(shù)根,則下列正確的是( 。

A.a=cB.a=bC.b=cD.a=b=c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半圓D的直徑AB4,線段OA7,O為原點,點B在數(shù)軸的正半軸上運動,點B在數(shù)軸上所表示的數(shù)為m

1)當半圓D與數(shù)軸相切時,m 

2)半圓D與數(shù)軸有兩個公共點,設另一個公共點是C

直接寫出m的取值范圍是 

BC2時,求△AOB與半圓D的公共部分的面積.

3)當△AOB的內心、外心與某一個頂點在同一條直線上時,求tanAOB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列代數(shù)式:ab,ac,a+b+c,a-b+c, 2a+b,2a-b中,其值為正的代數(shù)式的個數(shù)為(

A.2B.3C.4D.4個以上

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某倉儲中心有一個坡度為i12的斜坡AB,頂部A處的高AC4米,BC在同一水平地面上,其橫截面如圖.

1)求該斜坡的坡面AB的長度;

2)現(xiàn)有一個側面圖為矩形DEFG的長方體貨柜,其中長DE2.5米,高EF2米,該貨柜沿斜坡向下時,點DBC所在水平面的高度不斷變化,求當BF3.5米時,點DBC所在水平面的高度DH

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近幾年購物的支付方式日益增多,某數(shù)學興趣小組就此進行了抽樣調查.調查結果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內購買者的支付方式進行調查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次一共調查了多少名購買者?

(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應的圓心角為   度.

(3)若該超市這一周內有1600名購買者,請你估計使用AB兩種支付方式的購買者共有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】萬州三中初中數(shù)學組深知人生最具好奇心和幻想力、創(chuàng)造力的時期是中學時代,經研究,為我校每一個初中生推薦一本中學生素質數(shù)育必讀書《數(shù)學的奧秘》,這本書就是專門為好奇的中學生準備的.這本書不但給于我們知識,解答生活中的疑惑,更重要的是培養(yǎng)我們細致觀察、認真思考、勤于動手的能力.經過一學期的閱讀和學習,為了了解學生閱讀效果,我們從初一、初二的學生中隨機各選20名,對《數(shù)學的奧秘》此書閱讀效果做測試(此次測試滿分:100分).通過測試,我們收集到20名學生得分的數(shù)據(jù)如下:

初一

96

100

89

95

62

75

93

86

86

93

95

95

88

94

95

68

92

80

78

90

初二

100

98

96

95

94

92

92

92

92

92

86

84

83

82

78

78

74

64

60

92

通過整理,兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)和方差如表:

年級

平均數(shù)

中位數(shù)

眾數(shù)

方差

初一

87.5

91

m

96.15

初二

86.2

n

92

113.06

某同學將初一學生得分按分數(shù)段(,,),繪制成頻數(shù)分布直方圖,初二同學得分繪制成扇形統(tǒng)計圖,如圖(均不完整),初一學生得分頻數(shù)分布直方圖 初二學生得分扇形統(tǒng)計圖(注:x表示學生分數(shù))

請完成下列問題:

1)初一學生得分的眾數(shù)________;初二學生得分的中位數(shù)________

2)補全頻數(shù)分布直方圖;扇形統(tǒng)計圖中,所對用的圓心角為________度;

3)經過分析________學生得分相對穩(wěn)定(填初一初二);

4)你認為哪個年級閱讀效果更好,請說明理由.

查看答案和解析>>

同步練習冊答案