【題目】如圖,已知:在△ABC中,AB、BC邊上的垂直平分線相交于點P.若∠BAC=50°,則∠BPC的度數(shù)為( )
A.100°B.110°C.115°D.120°
【答案】A
【解析】
根據(jù)垂直平分線的性質(zhì)得到AP=BP=CP,從而有∠1=∠3,∠2=∠5,則∠3+∠5=∠1+∠2=50°,于是有∠3+∠5+∠4+∠6=180°-50°=130°,從而可得到∠4+∠6,然后根據(jù)三角形的內(nèi)角和定理即可計算出∠BPC的度數(shù).
解:∵AB、BC的垂直平分線相交于點P,
∴AP=BP=CP,
∴∠1=∠3,∠2=∠5,
而∠BAC=50°,
∴∠3+∠5=∠1+∠2=50°,
而∠3+∠4+∠5+∠6=180°-50°=130°,
∴∠4+∠6=130°-50°=80°,
∴∠BPC=180°-∠4-∠6=100°.
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC 中,∠BAC=120°,AB=AC=2,點 D 在邊 BC 上,CD=,將線段 CD 繞點 C 逆時針旋轉(zhuǎn)α°(其中 0<α≤360)到 CE,連接AE,以 AB,AE 為邊作 ABFE,連接 DF,則 DF 的最大值為( )
A. + B. + C. 2+ D. +2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,,,點是的中點.點以每秒1個單位長度的速度從點出發(fā),沿向點運動;同時,點以每秒2個單位長度的速度從點出發(fā),沿向點運動.點停止運動時,點也隨之停止運動.求當(dāng)運動時間為多少秒時,以點,,,為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,EC的延長線交BD于點P.
(1)把△ABC繞點A旋轉(zhuǎn)到圖1,BD,CE的關(guān)系是 (選填“相等”或“不相等”);簡要說明理由;
(2)若AB=3,AD=5,把△ABC繞點A旋轉(zhuǎn),當(dāng)∠EAC=90°時,在圖2中作出旋轉(zhuǎn)后的圖形,PD= ,簡要說明計算過程;
(3)在(2)的條件下寫出旋轉(zhuǎn)過程中線段PD的最小值為 ,最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于第一、象限內(nèi)的,兩點,與軸交于點.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫出當(dāng)時,的取值范圍;
(3)長為2的線段在射線上左右移動,若射線上存在三個點使得為等腰三角形,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=108°,BD平分∠ABC交AC于點D.
(1)填空:∠DBC=_________度;
(2)猜想:BC、AB、CD三者數(shù)量關(guān)系_____________________;
(3)證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,將矩形繞點旋轉(zhuǎn)得到矩形,使點的對應(yīng)點落在上,交于點,在上取點,使.
(1)求證:;
(2)求的度數(shù);
(3)若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,∠ABC=60°,BC=8,點 D 是 BC 邊的中點,點 E 是邊 AC上一點,過點 D 作 ED 的垂線交邊 AC 于點 F,若 AC=7CF,且 DE 恰好平分△ABC 的周長,則△ABC 的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在□ABCD中,AE平分∠BAD,交BC于點E,BF平分∠ABC,交AD于點F,過點F作FG⊥BF交BC的延長線于點G.
(1)求證:四邊形ABEF是菱形;
(2)如果AB= 2,∠BAD=60°,求FG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com