【題目】如圖:在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連結(jié)AD、AG。
求證:(1)AD=AG,(2)AD與AG的位置關(guān)系如何。
【答案】(1)證明見解析(2)位置關(guān)系是AD⊥GA,利用見解析.
【解析】
試題分析:(1)先根據(jù)條件證明△BHF∽△CHE得出∠ABD=∠ACG,然后可證△ABD≌△GCA,從而可得AD=AG;(2)根據(jù)△ABD≌△GCA得出∠ADB=∠GAC,然后利用角的關(guān)系得出∠AED=∠GAD=90°,即可得證.
試題解析:(1)∵BE⊥AC,CF⊥AB,
∴∠HFB=∠HEC=90°,又∠BHF=∠CHE,
∴△BHF∽△CHE,
∴∠ABD=∠ACG,
在△ABD和△GCA中
,
∴△ABD≌△GCA(SAS),
∴AD=GA(全等三角形的對應(yīng)邊相等);
(2)位置關(guān)系是AD⊥GA,
理由為:∵△ABD≌△GCA,
∴∠ADB=∠GAC,
又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,
∴∠AED=∠GAD=90°,
∴AD⊥GA.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AD=2AB=4,E是AD的中點(diǎn),一塊足夠大的三角板的直角頂點(diǎn)與點(diǎn)E重合,將三角板繞點(diǎn)E旋轉(zhuǎn),三角板的兩直角邊分別交AB,BC(或它們的延長線)于點(diǎn)M,N,設(shè)∠AEM=α(0°<α<90°),給出下列四個結(jié)論:
①AM=CN;②∠AME=∠BNE;③BN﹣AM=2;④S△EMN=.
上述結(jié)論中正確的個數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把8a3-8a2+2a進(jìn)行因式分解,結(jié)果正確的是( )
A.2a(4a2-4a+1)
B.8a2(a-1)
C.2a(2a-1)2
D.2a(2a+1)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖并計(jì)算:已知線段AB=2 cm,延長線段AB至點(diǎn)C,使得2BC=AB,再反向延長AC至點(diǎn)D,使得AD=AC.
(1)準(zhǔn)確地畫出圖形,并標(biāo)出相應(yīng)的字母;
(2)線段DC的中點(diǎn)是哪個?線段AB的長是線段DC長的幾分之幾?
(3)求出線段BD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角坐標(biāo)系中,點(diǎn)P(x,y)在第三象限,且P到x軸和y軸的距離分別為3、7,則點(diǎn)P的坐標(biāo)為( 。
A.(﹣3,﹣7)
B.(﹣7,﹣3)
C.(3,7)
D.(7,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD各頂點(diǎn)的坐標(biāo)分別為A(0,1),B(5,1),C(7,3),D(2,5).
(1)在平面直角坐標(biāo)系中畫出該四邊形;
(2)四邊形ABCD內(nèi)(邊界點(diǎn)除外)一共有________個整點(diǎn)(即橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點(diǎn));
(3)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知∠AOB=α,在射線OA、OB上分別取點(diǎn)OA1=OB1,連結(jié)A1B1,在B1A1、B1B上分別取點(diǎn)A2、B2,使B1B2=B1A2,連結(jié)A2B2…按此規(guī)律下去,記∠A2B1 B2=θ1,∠A3B2B3=θ2,…,∠An+1Bn Bn+1=θn,則θ2016﹣θ2015的值為(。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料:
如圖1,在數(shù)軸上A點(diǎn)衰示的數(shù)為a,B點(diǎn)表示的數(shù)為b,則點(diǎn)A到點(diǎn)B的距離記為AB.線段AB的長可以用右邊的數(shù)減去左邊的數(shù)表示,即AB﹣b﹣a.
請用上面的知識解答下面的問題:
如圖2,一個點(diǎn)從數(shù)軸上的原點(diǎn)開始,先向左移動1cm到達(dá)A點(diǎn),再向左移動2cm到達(dá)B點(diǎn),然后向右移動7cm到達(dá)C點(diǎn),用1個單位長度表示1cm.
(1)請你在數(shù)軸上表示出A.B.C三點(diǎn)的位置:
(2)點(diǎn)C到點(diǎn)人的距離CA= cm;若數(shù)軸上有一點(diǎn)D,且AD=4,則點(diǎn)D表示的數(shù)為 ;
(3)若將點(diǎn)A向右移動xcm,則移動后的點(diǎn)表示的數(shù)為 ;(用代數(shù)式表示)
(4)若點(diǎn)B以每秒2cm的速度向左移動,同時A.C點(diǎn)分別以每秒1cm、4cm的速度向右移動.設(shè)移動時間為t秒,
試探索:CA﹣AB的值是否會隨著t的變化而改變?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com