【題目】在一只不透明的盒子里有背面完全相同,正面上分別寫有數(shù)字1、2、3、4的四張卡片,小馬從中隨機地抽取一張,把卡片上的數(shù)字作為被減數(shù);在另一只不透明的盒子里將形狀、大小完全相同,分別標有數(shù)字1、2、3的三個小球混合后,小虎從中隨機地抽取一個,把小球上的數(shù)字做為減數(shù),然后計算出這兩個數(shù)的差.
(1)請你用畫樹狀圖或列表的方法,求這兩數(shù)差為0的概率;
(2)小馬與小虎做游戲,規(guī)則是:若這兩數(shù)的差為非正數(shù),則小馬贏;否則小虎贏.你認為該游戲公平嗎?請說明理由.
【答案】(1)答案見解析(2)游戲公平,理由見解析
【解析】
試題(1)先利用畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出兩數(shù)差為0的結(jié)果數(shù),然后根據(jù)概率公式求解;
(2)先找出這兩數(shù)的差為非正數(shù)的結(jié)果數(shù)和這兩數(shù)的差為正數(shù)的結(jié)果數(shù),再根據(jù)概率公式計算出小馬贏的概率和小虎贏的概率,然后通過比較概率的大小判斷該游戲是否公平.
解:(1)畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),其中兩數(shù)差為0的結(jié)果數(shù)為3,
所以 P(兩數(shù)差為0)==;
(2)該游戲公平.理由如下:
因為這兩數(shù)的差為非正數(shù)的結(jié)果數(shù)為6,這兩數(shù)的差為正數(shù)的結(jié)果數(shù)為6,
小馬贏的概率==,小虎贏的概率==,
所以游戲公平.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在菱形中, ,.點從點出發(fā)以每秒2個單位的速度沿邊向終點運動,過點作交邊于點,過點向上作,且,以、為邊作矩形.設(shè)點的運動時間為(秒),矩形與菱形重疊部分圖形的面積為.
(1)用含的代數(shù)式表示線段的長.
(2)當點落在邊上時,求的值.
(3)當時,求與之間的函數(shù)關(guān)系式,
(4)如圖②,若點是的中點,作直線.當直線將矩形分成兩部分圖形的面積比為時,直接寫出的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了豐富校園文化,某校決定舉行學生趣味運動會,將比賽項目確定為袋鼠跳,夾球跑,跳大繩,綁腿跑和拔河賽5項,為了解學生對這5項運動的喜歡情況,隨機調(diào)查了該校部分學生最喜歡的一種項目(每名學生必選且只能選擇5項中的一種),并將調(diào)查結(jié)果繪制成如圖所示的不完整的統(tǒng)計圖表:
根據(jù)圖表中提供的信息解答下列問題:
(1)求a,b的值.
(2)請將條形統(tǒng)計圖補充完整.
(3)根據(jù)調(diào)查結(jié)果,請你估計該校2500名學生中有多少名學生最喜歡綁腿跑.
學生最喜歡的活動項目的人數(shù)統(tǒng)計表
項目 | 學生數(shù)(名) | 百分比(%) |
袋鼠跳 | 45 | 15 |
夾球跑 | a | 10 |
跳大繩 | 75 | 25 |
綁腿跑 | b | 20 |
拔河賽 | 90 | 30 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某物流公 司承接A、B兩種貨物運輸業(yè)務(wù),已知5月份A貨物運費單價為50元/噸,B貨物運費單價為30元/噸,共收取運費9500元;6月份由于油價上漲,運費單價上漲為:A貨物70元/噸,B貨物40元/噸;該物流公司6月承接的A種貨物和B種數(shù)量與5月份相同,6月份共收取運費13000元。
(1)該物流公司月運輸兩種貨物各多少噸?
(2)該物流公司預(yù)計7月份運輸這兩種貨物330噸,且A貨物的數(shù)量不大于B貨物的2倍,在運費單價與6月份相同的情況下,該物流公司7月份最多將收到多少運輸費?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線(a≠0)交x軸于A、B兩點,A點坐標為(3,0),與y軸交于點C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點G.
(1)求拋物線的解析式;
(2)拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標為m,請用含m的代數(shù)式表示PM的長;
(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境:
在綜合與實踐課上,老師讓同學們以“矩形紙片的剪拼”為主題開展數(shù)學活動.如圖1,將矩形紙片沿對角線剪開,得到和.并且量得,.
操作發(fā)現(xiàn):
(1)將圖1中的以點為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使,得到如圖2所示的,過點作的平行線,與的延長線交于點,則四邊形的形狀是________.
(2)創(chuàng)新小組將圖1中的以點為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使、、三點在同一條直線上,得到如圖3所示的,連接,取的中點,連接并延長至點,使,連接、,得到四邊形,發(fā)現(xiàn)它是正方形,請你證明這個結(jié)論.
實踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進行如下操作:將沿著方向平移,使點與點重合,此時點平移至點,與相交于點,如圖4所示,連接,試求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校為了提高學生跳遠科目的成績,對全校500名九年級學生開展了為期一個月的跳遠科目強化訓練。王老師為了了解學生的訓練情況,強化訓練前,隨機抽取了該年級部分學生進行跳遠測試,經(jīng)過一個月的強化訓練后,再次測得這部分學生的跳遠成績,將兩次測得的成績制作成圖所示的統(tǒng)計圖和不完整的統(tǒng)計表(滿分10分,得分均為整數(shù)).
根據(jù)以上信息回答下列問題:
(1)訓練后學生成績統(tǒng)計表中,并補充完成下表:
(2)若跳遠成績9分及以上為優(yōu)秀,估計該校九年級學生訓練后比訓練前達到優(yōu)秀的人數(shù)增加了多少?
(3)經(jīng)調(diào)查,經(jīng)過訓練后得到9分的五名同學中,有三名男生和兩名女生,王老師要從這五名同學中隨機抽取兩名同學寫出訓練報告,請用列表或畫樹狀圖的方法,求所抽取的兩名同學恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的弦,D為半徑OA的中點,過D作CD⊥OA交弦AB于點E,交⊙O于點F,且BC是⊙O的切線.
(1)求證:CE=CB;
(2)連接AF,BF,求∠ABF的正弦值;
(3)如果CD=15,BE=10,sinA=,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com