計(jì)算:(1)2m2×(-2mn)×(-
12
mn)3×(-m)

(2)(x+3y-2z)(x-2z-3y)
分析:(1)先算乘方再算乘除即可;
(2)運(yùn)用平方差公式進(jìn)行計(jì)算即可.
解答:解:(1)原式=2m2×(-2mn)×(-
1
8
m3n3)×(-m)
=-
1
2
m7n4;
(2)原式=[(x-2z)+3y][(x-2z)-3y]
=(x-2z)2-(3y)2
=x2-4xz+4z2-9y2
點(diǎn)評(píng):本題考查了整式的混合運(yùn)算,是基礎(chǔ)知識(shí)比較簡(jiǎn)單.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算下列各題:
(1)(5m3n22•(-2m23•(-n34
(2)(π-3)0+(-0.125)2009×82009;
(3)(2am-3bn)(3an+5bm);
(4)(
1
3
x+
3
4
y)(
1
3
x-
3
4
y)-(
1
3
x-
3
4
y)2;
(5)(66x6y3-24x4y2+9x2y)÷(-3x2y).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題背景:
在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為
5
、
10
、
13
,求這個(gè)三角形的面積.
小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.我們把上述求△ABC面積的方法叫做構(gòu)圖法.
(1)若△ABC三邊的長(zhǎng)分別為
5
a,2
2
a,
17
a
(a>0),請(qǐng)利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為a)畫出相應(yīng)的△ABC,并求出它的面積.
思維拓展:
(2)若△ABC三邊的長(zhǎng)分別為
m2+16n2
,
9m2+4n2
,2
m2+n2
(m>0,n>0,且m≠n),試運(yùn)用構(gòu)圖法求出這三角形的面積.
探索創(chuàng)新:
(3)已知a、b都是正數(shù),a+b=3,求當(dāng)a、b為何值時(shí)
a2+4
+
b2+25
有最小值,并求這個(gè)最小值.
(4)已知a,b,c,d都是正數(shù),且a2+b2=c2,c
a2-d2
=a2,求證:ab=cd.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算
(1)計(jì)算:20090-32+|4|+(
12
)-1

(2)化簡(jiǎn)(m-n)(m+n)+(m+n)2-2m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

計(jì)算:(1)2m2×(-2mn)×(-
1
2
mn)3×(-m)

(2)(x+3y-2z)(x-2z-3y)

查看答案和解析>>

同步練習(xí)冊(cè)答案