【題目】△ABC是一塊直角三角形紙片,∠ACB=90°,將該三角形紙片折疊,使點(diǎn)A與點(diǎn)C重合,DE為折痕.
(1)線段AE和BE有怎樣的數(shù)量關(guān)系?寫出你的結(jié)論并進(jìn)行證明.
結(jié)論: .
證明:
(2)直角三角形斜邊的中線和斜邊有怎樣的數(shù)量關(guān)系?寫出你的結(jié)論(不證明).
結(jié)論: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把n個(gè)邊長(zhǎng)為1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,計(jì)算tan∠BA4C=_____,…按此規(guī)律,寫出tan∠BAnC=_____(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)和(頂點(diǎn)是網(wǎng)格線的交點(diǎn)).點(diǎn)、坐標(biāo)為,.
觀察圖形填空:是由繞________點(diǎn)順時(shí)針旋轉(zhuǎn)________度得到的;
把中的圖形作為一個(gè)新的”基本圖形“,將新的基本圖形繞點(diǎn)順時(shí)針旋轉(zhuǎn)度,請(qǐng)作出旋轉(zhuǎn)后的圖形,其中,、、、的對(duì)應(yīng)點(diǎn)分別為、、、.依次連接、、、,則四邊形的形狀為________;
以點(diǎn)為位似中心,位似比為(原圖與新圖對(duì)應(yīng)邊的比為),作出四邊形的位似圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于(2,0)、(1,0),與y軸交于C,直線l1經(jīng)過(guò)點(diǎn)C且平行于x軸,與拋物線的另一個(gè)交點(diǎn)為D,將直線l1向下平移t個(gè)單位得到直線l2,l2與拋物線交于A、B兩點(diǎn).
(1)求拋物線解析式及點(diǎn)C的坐標(biāo);
(2)當(dāng)t=2時(shí),探究△ABC的形狀,并說(shuō)明理由;
(3)在(2)的條件下,點(diǎn)M(m,0)在x軸上自由運(yùn)動(dòng),過(guò)M作MN⊥x軸,交直線BC于P,交拋物線于N,若三個(gè)點(diǎn)M、N、P中恰有一個(gè)點(diǎn)是其他兩個(gè)點(diǎn)連線段的中點(diǎn)(三點(diǎn)重合除外),則稱M、N、P三點(diǎn)為“共諧點(diǎn)”,請(qǐng)直接寫出使得M、P、N三點(diǎn)為“共諧點(diǎn)”的m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,IB,IC分別平分∠ABC,∠ACB,過(guò)I點(diǎn)作DE∥BC,分別交AB于D,交AC于E,給出下列結(jié)論:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周長(zhǎng)等于AB+AC,其中正確的是: ___________(只需填寫序號(hào))。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,∠B=∠C=90 ,M是BC的中點(diǎn),DM平分∠ADC.
(1)若連接AM,則AM是否平分∠BAD?請(qǐng)你證明你的結(jié)論;
(2)線段DM與AM有怎樣的位置關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,根據(jù)要求回答下列問(wèn)題:
(1)點(diǎn)A關(guān)于y軸對(duì)稱點(diǎn)A′的坐標(biāo)是 ;點(diǎn)B關(guān)于y軸對(duì)稱點(diǎn)B′的坐標(biāo)是
(2)作出△ABC關(guān)于y軸對(duì)稱的圖形△A′B′C′(不要求寫作法)
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,C是AB上一點(diǎn),點(diǎn)D,E分別在AB兩側(cè),AD∥BE,且AD=BC,BE=AC.
(1)求證:CD=CE;
(2)連接DE,交AB于點(diǎn)F,猜想△BEF的形狀,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,AD為中線,點(diǎn)P是AD上一點(diǎn),點(diǎn)Q是AC上一點(diǎn),且∠BPQ+∠BAQ=180°.
(1)若∠ABP=α,求∠PQC的度數(shù)(用含α的式子表示);
(2)求證:BP=PQ.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com