【題目】已知多項(xiàng)式3x2+my﹣8與多項(xiàng)式﹣x2+2y+7的和中,不含有y項(xiàng),求m的值.

【答案】解:(3x2+my﹣8)+(﹣x2+2y+7)
=3x2+my﹣8﹣x2+2y+7
=2x2+(m+2)y﹣1,
因?yàn)椴缓衴項(xiàng),所以m+2=0,
解得:m=﹣2.
【解析】根據(jù)題意列出關(guān)系式,合并后由結(jié)果不含y求出m的值即可.
【考點(diǎn)精析】本題主要考查了整式加減法則的相關(guān)知識(shí)點(diǎn),需要掌握整式的運(yùn)算法則:(1)去括號(hào);(2)合并同類項(xiàng)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過一點(diǎn)A畫直線,可以畫__ 條;過不在同一直線上三點(diǎn)中的任意兩點(diǎn)畫直線,一共可能畫____條.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果崇左市市區(qū)某中午的氣溫是37℃,到下午下降了3℃,那么下午的氣溫是(
A.40℃
B.38℃
C.36℃
D.34℃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果∠α和∠β互補(bǔ),且∠α>∠β,則下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③ (∠α+∠β);④ (∠α﹣∠β).正確的有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點(diǎn)M為DE的中點(diǎn),過點(diǎn)E與AD平行的直線交射線AM于點(diǎn)N.
(1)當(dāng)A、B、C三點(diǎn)在同一直線上時(shí)(如圖1),求證:M為AN的中點(diǎn);
(2)將圖1中△BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A、B、E三點(diǎn)在同一直線上(如圖2),求證:△CAN為等腰直角三角形;
(3)將圖1中△BCE繞點(diǎn)B旋轉(zhuǎn)到圖3的位置時(shí),(2)中的結(jié)論是否仍然成立?若成立,試證明之;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)直角三角形的兩邊長(zhǎng)分別為34,則斜邊長(zhǎng)為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x=﹣1是方程x2+px+q0的解,則pq的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOC=∠BOD=α(0°<α<180°)
(1)如圖1,若α=90°

①寫出圖中一組相等的角(除直角外) , 理由是
②試猜想∠COD和∠AOB在數(shù)量上是相等、互余、還是互補(bǔ)的關(guān)系,并說明理由;
(2)如圖2,∠COD+∠AOB和∠AOC滿足的等量關(guān)系是;當(dāng)α=°,∠COD和∠AOB互余.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在國(guó)務(wù)院辦公廳發(fā)布《中國(guó)足球發(fā)展改革總體方案》之后,某校為了調(diào)查本校學(xué)生對(duì)足球知識(shí)的了解程度,隨機(jī)抽取了部分學(xué)生進(jìn)行一次問卷調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中所給的信息,解答下列問題:

(1)本次接受問卷調(diào)查的學(xué)生總?cè)藬?shù)是 ;

(2)扇形統(tǒng)計(jì)圖中,“了解”所對(duì)應(yīng)扇形的圓心角的度數(shù)為 ,m的值為 ;

(3)若該校共有學(xué)生1500名,請(qǐng)根據(jù)上述調(diào)查結(jié)果估算該校學(xué)生對(duì)足球的了解程度為“基本了解”的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案