【題目】(11分)如圖,拋物線y=ax2+bx﹣3與x軸交于A,B兩點,與y軸交于C點,且經(jīng)過點(2,﹣3a),對稱軸是直線x=1,頂點是M.

(1)求拋物線對應的函數(shù)表達式;

(2)經(jīng)過C,M兩點作直線與x軸交于點N,在拋物線上是否存在這樣的點P,使以點P,A,C,N為頂點的四邊形為平行四邊形?若存在,請求出點P的坐標;若不存在,請說明理由;

(3)設直線y=﹣x+3與y軸的交點是D,在線段BD上任取一點E(不與B,D重合),經(jīng)過A,B,E三點的圓交直線BC于點F,試判斷AEF的形狀,并說明理由;

(4)當E是直線y=﹣x+3上任意一點時,(3)中的結論是否成立(請直接寫出結論).

【答案】(1)y=x2﹣2x﹣3;(2)存在,P(2,﹣3);(3)△AEF是等腰直角三角形.理由見解析;(4)△AEF是等腰直角三角形.

【解析】試題分析:(1)依題意聯(lián)立方程組求出a,b的值后可求出函數(shù)表達式;

2分別令x=0,y=0求出A、B、C三點的坐標,然后易求直線CM的解析式.證明四邊形ANCP為平行四邊形可求出點P的坐標;

3)求出直線y=-x+3與坐標軸的交點D,B的坐標.然后證明∠AFE=ABE=45°AE=AF,可證得三角形AEF是等腰直角三角形;

4)根據(jù)(3)中所求,即可得出當E是直線y=-x+3上任意一點時,(3)中的結論仍成立.

試題解析:(1)根據(jù)題意,,

解得

∴拋物線對應的函數(shù)表達式為y=x22x3;

(2)存在.連接AP,CP,

如下圖所示:

y=x22x3中,令x=0,得y=3.

y=0x22x3=0,

x1=1x2=3.

A(1,0)B(3,0)C(0,3).

y=(x1)24

∴頂點M(14),

容易求得直線CM的表達式是y=x3.

y=x3中,令y=0,得x=3.

N(3,0),

AN=2,

y=x22x3,y=3,x1=0,x2=2.

CP=2

AN=CP.

ANCP,

∴四邊形ANCP為平行四邊形,此時P(2,3);

(3)AEF是等腰直角三角形.

理由:在y=x+3中,令x=0,得y=3,令y=0,得x=3.

∴直線y=x+3與坐標軸的交點是D(03),B(3,0).

OD=OB

∴∠OBD=45°,

又∵點C(03),

OB=OC.

∴∠OBC=45°,

由圖知∠AEF=ABF=45°,AFE=ABE=45°,

∴∠EAF=90°,且AE=AF.

∴△AEF是等腰直角三角形;

(4)當點E是直線y=x+3上任意一點時(3)中的結論:AEF是等腰直角三角形成立.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,,點Dx軸上,若在線段包括兩個端點上找點P,使得點A,D,P構成等腰三角形的點P恰好只有1,下列選項中滿足上述條件的點D坐標不可以是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】[背景知識]數(shù)軸是初中數(shù)學的一個重要工具,利用數(shù)軸可以將數(shù)與形完美的結合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:數(shù)軸上A點、B點表示的數(shù)為a、b,則A,B兩點之間的距離AB=|a﹣b|,若ab,則可簡化為AB=a﹣b;線段AB的中點M表示的數(shù)為

[問題情境]

已知數(shù)軸上有A、B兩點,分別表示的數(shù)為﹣10,8,點A以每秒3個單位的速度沿數(shù)軸向右勻速運動,點B以每秒2個單位向左勻速運動.設運動時間為t秒(t0).

[綜合運用]

1)運動開始前,A、B兩點的距離為 ;線段AB的中點M所表示的數(shù)

2)點A運動t秒后所在位置的點表示的數(shù)為 ;點B運動t秒后所在位置的點表示的數(shù)為 ;(用含t的代數(shù)式表示)

3)它們按上述方式運動,AB兩點經(jīng)過多少秒會相遇,相遇點所表示的數(shù)是什么?

4)若A,B按上述方式繼續(xù)運動下去,線段AB的中點M能否與原點重合?若能,求出運動時間,并直接寫出中點M的運動方向和運動速度;若不能,請說明理由.(當A,B兩點重合,則中點M也與A,B兩點重合)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發(fā),勻速行駛,設行駛的時間為x(時),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達乙地過程中yx之間的函數(shù)關系,已知兩車相遇時快車比慢車多行駛40千米,快車到達乙地時,慢車還有( )千米到達甲地.

A. 70 B. 80 C. 90 D. 100

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABCD中,E,F(xiàn)分別是邊AD,BC上的點,且AE=CF,直線EF分別交BA的延長線、DC的延長線于點G,H,交BD于點O.

(1)求證:△ABE≌△CDF;

(2)連接DG,若DG=BG,則四邊形BEDF是什么特殊四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,D、E分別是AB、BC邊上的中點,過點CCFAB,交DE的延長線于F點,連接CD、BF

1)求證:△BDE≌△CFE;

2)△ABC滿足什么條件時,四邊形BDCF是矩形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠ABC=90°,D是直線AB上的點,AD=BC

(1)如圖1,過點AAFAB,截取AF=BD,連接DCDF、CF,判斷△CDF的形狀并證明;

(2)如圖2,E是直線BC上一點,且CE=BD,直線AECD相交于點P,∠APD的度數(shù)是一個固定的值嗎?若是,請求出它的度數(shù);若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人同時從A地出發(fā)去25km遠的B地,甲騎車,乙步行,甲的速度是乙的速度的3倍,甲到達B地停留40min,然后從B地返回A地,在途中遇見乙,這時距他們出發(fā)的時間恰好為3h.

1)若設乙的速度為x km/h,則甲的速度為 km/h,甲遇見乙時,乙走的路程可以表示為 km,甲走的路程可以表示為 km.

2)兩人的速度分別是多少?(請用方程來解決問題)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,DBC的中點,DE⊥BCCE//AD,若AC2CE4,則四邊形ACEB的周長為

查看答案和解析>>

同步練習冊答案