7、如圖,PA、PB分別切圓O于A、B兩點,C為劣弧AB上一點,∠APB=30°,則∠ACB=( 。
分析:如圖,連接AO,OB,PA、PB分別切圓O于A、B兩點,可以知道∠PAO=∠PBO=90°,由此可以求出∠AOB的度數(shù);設點E是優(yōu)弧AB上一點,由圓周角定理知,∠E=75°,由圓內接四邊形的對角互補即可求出∠ACB的度數(shù).
解答:解:如圖,連接AO,OB,
∵PA、PB分別切圓O于A、B兩點,
∴∠PAO=∠PBO=90°,
∴∠AOB=180°-∠P=150°,
設點E是優(yōu)弧AB上一點,
由圓周角定理知,∠E=75°,
由圓內接四邊形的對角互補知,
∠ACB=180°-∠E=105°.
故選C.
點評:本題利用了切線的性質,四邊形的內角和為360度,圓周角定理,圓內接四邊形的性質求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,PA、PB分別切圓O于A、B兩點,C為劣弧AB上一點,已知∠P=50°,則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、如圖,PA,PB分別切⊙O于點A,B,點C是AB上一點,過C作⊙O的切線,交PA,PB于點D,E,若PA=6cm,則△PDE的周長是
12
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•綿陽)如圖,PA、PB分別切⊙O于A、B,連接PO、AB相交于D,C是⊙O上一點,∠C=60°.
(1)求∠APB的大;
(2)若PO=20cm,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,PA,PB分別切⊙O于點A和點B,C是
AB
上任一點,過C的切線分別交PA,PB于D,E.若⊙O的半徑為6,PO=10,則△PDE的周長是( 。

查看答案和解析>>

同步練習冊答案