【題目】如圖,O是△ABC內(nèi)一點,∠OBC=60°,∠AOC=120°,OA=OC=,OB=1,則AB邊的長為_____.
【答案】
【解析】
如圖,將△AOB順時針旋轉(zhuǎn)120°直至OA與OC重合,于是得到∠BOB'=120°,OB=OB'=1,根據(jù)等腰三角形的性質(zhì)得到∠OBB'=30°,推出∠B'BA=90°,BB'=,過O作OD⊥BA,垂足為D,解直角三角形即可得到結(jié)論.
如圖,將△AOB順時針旋轉(zhuǎn)120°直至OA與OC重合,則∠BOB'=120°,OB=OB'=1,
∴∠OBB'=30°,
∵∠OBC=60°,
∴∠B'BA=90°,BB'= ,
過O作OD⊥BA,垂足為D,
∵∠OBD=60°,OB=1,
∴BD=,OD=,
在Rt△ODC中,CD=,
∴BC=BD+CD=4,
在Rt△B'BA中,AB'=,
∴AB=AB'=,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知菱形的邊長和一條對角線的長均為2 cm,則菱形的面積為( )
A. 3cm2 B. 4 cm2 C. cm2 D. 2cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,給出下列結(jié)論:①2a+b>0;
②b>a>c;③若-1<m<n<1,則m+n<;④3|a|+|c|<2|b|.其中正確的結(jié)論個數(shù)是( )
A. ①③④ B. ①③ C. ①④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級學(xué)生共人,為了解這個年級學(xué)生的體能,從中抽取名學(xué)生進行分鐘的跳繩測試,結(jié)果統(tǒng)計的頻率分布如圖所示,其中從左至右前四個小長方形的高依次為 ,如果跳繩次數(shù)不少于次為優(yōu)秀,根據(jù)這次抽查的結(jié)果,估計全年級達到跳繩優(yōu)秀的人數(shù)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.
(1)求證:AE與⊙O相切于點A;
(2)若AE∥BC,BC=2,AC=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有三點A(2,4)、B(3,5)、P(a,a),將線段AB繞點P順時針旋轉(zhuǎn)90°得到CD,其中A、B的對應(yīng)點分別為C、D;
(1)當(dāng)a=2時,
①在圖中畫出線段CD,保留作圖痕跡,并直接寫出C、D兩點的坐標(biāo);
②將線段CD向上平移m個單位,點C、D恰好同時落在反比例函數(shù)y=的圖象上,求m和k的值.
(2)若a=4,將函數(shù)y=(x>0)的圖象繞點P順時針旋轉(zhuǎn)90°得到新圖象,直線AB與新圖象的交點為E、F,則EF的長為 .(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“餃子“又名“交子”或者“嬌耳”,是新舊交替之意,它是重慶人民的年夜飯必吃的一道美食.今年除夕,小僑跟著媽媽一起包餃子準(zhǔn)備年夜飯,體驗濃濃的團圓氣氛.已知小僑家共10人,平均每人吃10個餃子,計劃用10分鐘將餃子包完.
(1)若媽媽每分鐘包餃子的速度是小僑速度的2倍少2個,那么小僑每分鐘至少要包多少個餃子?
(2)小僑以(1)問中的最低速度,和媽媽同時開始包餃子,媽媽包餃子的速度在(1)問的最低速度基礎(chǔ)上提升了a%,在包餃子的過程中小僑外出耽誤了分鐘,返家后,小僑與媽媽一起包完剩下的餃子,所用時間比原計劃少了a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展了“手機伴我健康行”主題活動.他們隨機抽取部分學(xué)生進行“手機使用目的”和“每周使用手機時間”的問卷調(diào)查,并繪制成如圖①②的統(tǒng)計圖。已知“查資料”人人數(shù)是40人。
請你根據(jù)以上信息解答以下問題
(1)在扇形統(tǒng)計圖中,“玩游戲”對應(yīng)的圓心角度數(shù)是_______________。
(2)補全條形統(tǒng)計圖
(3)該校共有學(xué)生1200人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線y=-x+與坐標(biāo)軸分別交于點A、B,且點C在x軸負(fù)半軸上,且AB:AC=1:2.
(1)求A、C兩點的坐標(biāo);
(2)若點M從點C出發(fā),以每秒1個單位的速度沿射線CB運動,連接AM,設(shè)△ABM的面積為S,點M的運動時間為t,寫出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)點P是y軸上的點,在坐標(biāo)平面內(nèi)是否存在點Q,使以A、B、P、Q為頂點的四邊形是菱形?若存在,請直接寫出Q點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com