【題目】如圖,平行四邊形ABCD的周長(zhǎng)是26cm,對(duì)角線AC與BD交于點(diǎn)O,AC⊥AB,E是BC中點(diǎn),△AOD的周長(zhǎng)比△AOB的周長(zhǎng)多3cm,則AE的長(zhǎng)度為(
A.3cm
B.4cm
C.5cm
D.8cm

【答案】B
【解析】解:∵ABCD的周長(zhǎng)為26cm, ∴AB+AD=13cm,OB=OD,
∵△AOD的周長(zhǎng)比△AOB的周長(zhǎng)多3cm,
∴(OA+OD+AD)﹣(OA+OB+AB)=AD﹣AB=3cm,
∴AB=5cm,AD=8cm.
∴BC=AD=8cm.
∵AC⊥AB,E是BC中點(diǎn),
∴AE= BC=4cm;
故選:B.
ABCD的周長(zhǎng)為26cm,對(duì)角線AC、BD相交于點(diǎn)O,若△AOD的周長(zhǎng)比△AOB的周長(zhǎng)多3cm,可得AB+AD=13cm,AD﹣AB=3cm,求出AB和AD的長(zhǎng),得出BC的長(zhǎng),再由直角三角形斜邊上的中線性質(zhì)即可求得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式計(jì)算正確的是( )

A. 7-2×(-)=5×(-)=-1 B. -3÷7×=-3÷1=-3

C. -32-(-3)2=-9-9=-18 D. 3×23-2×9=3×6-18=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形OABC的邊OA,OC在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(﹣4,4).點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿x軸向點(diǎn)O運(yùn)動(dòng);點(diǎn)Q從點(diǎn)O同時(shí)出發(fā),以相同的速度沿x軸的正方向運(yùn)動(dòng),規(guī)定點(diǎn)P到達(dá)點(diǎn)O時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接BP,過(guò)P點(diǎn)作BP的垂線,與過(guò)點(diǎn)Q平行于y軸的直線l相交于點(diǎn)D.BD與y軸交于點(diǎn)E,連接PE.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).
(1)∠PBD的度數(shù)為 , 點(diǎn)D的坐標(biāo)為(用t表示);
(2)當(dāng)t為何值時(shí),△PBE為等腰三角形?
(3)探索△POE周長(zhǎng)是否隨時(shí)間t的變化而變化?若變化,說(shuō)明理由;若不變,試求這個(gè)定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上點(diǎn)A表示數(shù)x,點(diǎn)B表示-2,點(diǎn)C表示數(shù)2x+8.

(1)若將數(shù)軸沿點(diǎn)B對(duì)折,點(diǎn)A與點(diǎn)C恰好重合則點(diǎn)A和點(diǎn)C分別表示什么數(shù)?

(2)BC=4AB則點(diǎn)A和點(diǎn)C分別表示什么數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式2ab+c-3b+c)的結(jié)果是______.

【答案】b+c)(2a-3

【解析】解析2ab+c-3b+c=b+c)(2a-3.

點(diǎn)睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).

2)公式法:完全平方公式,平方差公式.

(3)十字相乘法.

因式分解的時(shí)候,要注意整體換元法的靈活應(yīng)用,訓(xùn)練將一個(gè)式子看做一個(gè)整體,利用上述方法因式分解的能力.

型】填空
結(jié)束】
17

【題目】在我們所學(xué)的課本中,多項(xiàng)式與多項(xiàng)式相乘可以用幾何圖形的面積來(lái)表示.例如,(2a+b)(a+b)=2a2+3ab+b2就可以用圖(1)來(lái)表示.請(qǐng)你根據(jù)此方法寫(xiě)出圖(2)中圖形的面積所表示的代數(shù)恒等式:____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中AB=AC=4,∠C=72°,D是AB中點(diǎn),點(diǎn)E在AC上,DE⊥AB,則cosA的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E,點(diǎn)F分別在菱形ABCD的邊AB,AD上,且AE=DF,BF交DE于點(diǎn)G,延長(zhǎng)BF交CD的延長(zhǎng)線于H,若 =2,則 的值為(
A. ??
B. ??
C. ??
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O直徑,C為⊙O上一點(diǎn),點(diǎn)D是 的中點(diǎn),DE⊥AC于E,DF⊥AB于F.
(1)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若OF=4,求AC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,延長(zhǎng)CB至點(diǎn)F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點(diǎn)E,N,M,連接EO,已知BD=

(1)求正方形ABCD的邊長(zhǎng);

(2)求OE的長(zhǎng);

(3)①求證:CNAF;

②直接寫(xiě)出四邊形AFBO的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案