【題目】 如圖,先將正方形紙片對(duì)折,折痕為MN,再把點(diǎn)B折疊在折痕MN上,折痕為AE,點(diǎn)ECB上,點(diǎn)BMN上的對(duì)應(yīng)點(diǎn)為H,連接DH,則下列選項(xiàng)錯(cuò)誤的是( 。

A.ADH是等邊三角形B.NE=BC

C.BAE=15°D.MAH+NEH=90°

【答案】B

【解析】

依據(jù)折疊的性質(zhì)以及正方形的性質(zhì),得到ADH是等邊三角形;依據(jù)AM=AD=AH,得到∠AHM=30°,進(jìn)而得出∠BAE=15°;依據(jù)∠AHE=B=90°,∠AMH=ENH=90°,即可得到∠MAH+NEH=90°

由折疊可得,MN垂直平分AD,AB=AH,

DH=AH=AB=AD,

∴△ADH是等邊三角形,故A選項(xiàng)正確;

BE=HENE

BEBN,

NE=BC不成立,故B選項(xiàng)錯(cuò)誤;

由折疊可得,AM=AD=AH,

∴∠AHM=30°,∠HAM=60°,

又∵∠BAD=90°,

∴∠BAH=30°,

由折疊可得,∠BAE=BAH=15°,故C選項(xiàng)正確;

由折疊可得,∠AHE=B=90°,

又∵∠AMH=90°,

∴∠AHM+HAM=90°,∠AHM+EHN=90°,

∴∠HAM=EHN

同理可得∠NEH+AHM,

∴∠MAH+NEH=90°,故D選項(xiàng)正確;

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園安全受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學(xué)生共有   人,扇形統(tǒng)計(jì)圖中了解部分所對(duì)應(yīng)扇形的圓心角為   °;

(2)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù)為  人;

(3)若從對(duì)校園安全知識(shí)達(dá)到了解程度的3個(gè)女生A、B、C2個(gè)男生M、N中分別隨機(jī)抽取1人參加校園安全知識(shí)競賽,請(qǐng)用樹狀圖或列表法求出恰好抽到女生A的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,AD是∠BAC的平分線,GAD上一點(diǎn),且AG=DG,連接BG并延長BGACE,又過CAD的垂線交ADH,交ABF,則下列說法:

DBC的中點(diǎn);

BEAC;

③∠CDA>∠2;

④△AFC為等腰三角形;

⑤連接DF,若CF=6,AD=8,則四邊形ACDF的面積為24

其中正確的是________(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙O的直徑,弦BDAOE,連接BC,過點(diǎn)OOFBCF,若BD=8cm,AE=2cm,則OF的長度是( 。

A. 3cm B. cm C. 2.5cm D. cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過點(diǎn)D,分別交AC,AB于點(diǎn)E,F(xiàn).

(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;

(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 已知:如圖1,在RtABCRtA′B′C′中,AB=A′B′,AC=A′C′,∠C=C′=90°.求證:RtABCRtA′B′C′全等.

1)請(qǐng)你用如果,那么…”的形式敘述上述命題;

2)如圖2,將ABCA′B′C′拼在一起(即:點(diǎn)A與點(diǎn)B′重合,點(diǎn)B與點(diǎn)A′重合),BCB′C′相交于點(diǎn)O,請(qǐng)用此圖證明上述命題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平行四邊形ABCD中,BC=2AB,CE⊥AB于E,F(xiàn)為AD的中點(diǎn),若∠AEF=54,則∠B=( )

A. 54 B. 60 C. 72 D. 66

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,請(qǐng)按要求完成下列各題:

1)畫線段ADBC且使AD=BC,連接CD

2)線段AC的長為   ,CD的長為   ,AD的長為_____;

3ACD   三角形,四邊形ABCD的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點(diǎn)EBC上一點(diǎn),且DE=DA,AF⊥DE,垂足為點(diǎn)F,在下列結(jié)論中,不一定正確的是( 。

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

同步練習(xí)冊(cè)答案