如圖,梯形OABC中,O為直角坐標(biāo)系的原點,A、B、C的坐標(biāo)分別為
(14,0)、(14,3)、(4,3).點P、Q同時從原點出發(fā),分別作勻速運動,點P沿OA以每秒1個單位向終點A運動,點Q沿OC、CB以每秒2個單位向終點B運動.當(dāng)這兩點中有一點到達(dá)自己的終點時,另一點也停止運動.
(1)設(shè)從出發(fā)起運動了x秒,當(dāng)x等于多少時,四邊形OPQC為平行四邊形?
(2)四邊形OPQC能否成為等腰梯形?說明理由.
分析:(1)由A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).可得OC=
32+42
=5,BC=14-4=10,OA=14,又由當(dāng)點Q在BC上,且OP=CQ時,四邊形OPQC為平行四邊形,即可得方程:2x-5=x,解此方程即可求得答案;
(2)首先過點C作CE⊥OA于點E,過點Q作QF⊥OP于點F,由當(dāng)OP=CQ+OE+OF時,四邊形OPQC成為等腰梯形,即可得方程:x=4+(2x-5)+4,解此方程即可求得答案.
解答:解:(1)∵A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).
∴OC=
32+42
=5,BC=14-4=10,OA=14,
∵BC∥OA,
∴當(dāng)點Q在BC上,且OP=CQ時,四邊形OPQC為平行四邊形,
∴2x-5=x,
解得x=5;
∴當(dāng)x等于5時,四邊形OPQC為平行四邊形;

(3)不能,
理由:過點C作CE⊥OA于點E,過點Q作QF⊥OP于點F,
∵AO∥BC,
∴CE=QF,
當(dāng)OE=PF=4時,△OCE≌△PQF(SAS),
此時四邊形OPQC成為等腰梯形,
即OP=CQ+OE+OF,
∴x=4+(2x-5)+4,
解得x=-3(舍去),
∴四邊形OPQC不能成為等腰梯形.
點評:此題考查了梯形的性質(zhì)、平行四邊形的判定與性質(zhì)以及等腰梯形的判定與性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,梯形OABC中,O為直角坐標(biāo)系的原點,A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點P、Q同時從原點出發(fā),分別作勻速運動,其中點P沿OA向終點A運動,速度為每秒1個單位;點Q沿OC、CB向終點B運動,當(dāng)這兩點中有一點到達(dá)自己的終點時,另一點也停止運動.設(shè)P從出發(fā)起運動了t秒.
(1)如果點Q的速度為每秒2個單位,
①試分別寫出這時點Q在OC上或在CB上時的坐標(biāo)(用含t的代數(shù)式表示,不要求寫出t的取值范圍);
②求t為何值時,PQ∥OC?
(2)如果點P與點Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,
①試用含t的代數(shù)式表示這時點Q所經(jīng)過的路程和它的速度;
②試問:這時直線PQ是否可能同時把梯形OABC的面積也分成相等的兩部分?如有可能,求精英家教網(wǎng)出相應(yīng)的t的值和P、Q的坐標(biāo);如不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,梯形OABC中,O為直角坐標(biāo)系的原點,A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點P、Q同時從原點出發(fā),分別作勻速運動,點P沿OA以每秒1個單位向終點A運動,點Q沿OC、CB以每秒2個單位向終點B運動.當(dāng)這兩點中有一點到達(dá)自己的終點時,另一點也停止運動.
(1)設(shè)從出發(fā)起運動了x秒,且x>2.5時,Q點的坐標(biāo);
(2)當(dāng)x等于多少時,四邊形OPQC為平行四邊形?
(3)四邊形OPQC能否成為等腰梯形?說明理由;
(4)設(shè)四邊形OPQC的面積為y,求出當(dāng)x>2.5時y與x的函數(shù)關(guān)系式;并求出y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,梯形OABC中,CB∥OA,O為坐標(biāo)原點,A(4,0),C(0,4),tan∠BAO=2,動點P從點C出發(fā),以每秒1個單位的速度沿線段CB運動到點B后,再以每秒
5
個單位的速度沿線段BA運動,到點A停止,過點P作PQ⊥x軸于Q,以PQ為一邊向左作正方形PQRS,設(shè)運動時間為t(秒),正方形PQRS與梯形ABCD重疊的面積為S(平方單位).
(1)求點B的坐標(biāo).
(2)求S與t的函數(shù)關(guān)系式.
(3)求(2)中的S的最大值.
(4)連接OB,OB中點為M,正方形PQRS在變化過程中,使點M在正方形PQRS的邊上的t值為
1秒或3秒
1秒或3秒

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,梯形OABC中,BC∥AO,∠BAO=90°,B(-3
3
,3),直線OC的解析式為y=-
3
x,將△OBC繞點C順時針旋轉(zhuǎn)60°后,O到O1,B到B1,得△O1B1C.
(1)求證:點O1在x軸上;
(2)將點O1運動到點M(-4
3
,0),求∠B1MC的度數(shù);
(3)在(2)的條件下,將直線MC向下平移m個單位長度,設(shè)直線MC與線段AB交于點P,與線段OC的交于點Q,四邊形OAPQ的面積為S,求S與m的函數(shù)關(guān)系式,并求出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案