【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB,BD,BC于點(diǎn)E,F(xiàn),G,若∠ABC=30°,C=45°,ED=,點(diǎn)HBD上的一個(gè)動(dòng)點(diǎn),則HG+HC的最小值為______________.

【答案】

【解析】

首先證明四邊形BEDG是菱形,作EM⊥BCM,DN⊥BCN,連接ECBD于點(diǎn)H,此時(shí)HG+HC最小,在Rt△EMC中,求出EM、MC即可解決問題.

解:∵EG垂直平分BD,
∴EB=ED,GB=GD,
∴∠EBD=∠EDB,
∵∠EBD=∠DBC,
∴∠EDF=∠GBF,
在△EFD和△GFB,

∴△EFD≌△GFB(AAS)
∴ED=BG,
∴BE=ED=DG=GB,
∴四邊形EBGD是菱形.
如圖,作EM⊥BCM,DN⊥BCN,連接ECBD于點(diǎn)H,此時(shí)HG+HC最小

Rt△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2 ,
∴EM=BE=,
∵DE∥BC,EM⊥BC,DN⊥BC,
∴EM∥DN,EM=DN=,MN=DE=2
Rt△DNC中,∵∠DNC=90°,∠DCN=45°,
∴∠NDC=∠NCD=45°,
∴DN=NC=,
∴MC=3
Rt△EMC中,∵∠EMC=90°,EM=.MC=3,
∴EC==5
∵HG+HC=EH+HC=EC,
∴HG+HC的最小值為5
故答案為5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MON60°,點(diǎn)AOM邊上一點(diǎn),點(diǎn)B,CON邊上兩點(diǎn),且ABAC,作點(diǎn)B關(guān)于OM的對稱點(diǎn)點(diǎn)D,連接AD,CD,OD.

1)依題意補(bǔ)全圖形;

2)猜想∠DAC °,并證明;

3)猜想線段OA、OD、OC的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有下列說法:四個(gè)角都相等的四邊形是矩形;有一組對邊平行,有兩個(gè)角為直角的四邊形是矩形;兩組對邊分別相等且有一個(gè)角為直角的四邊形是矩形;對角線相等且有一個(gè)角是直角的四邊形是矩形;對角線互相平分且相等的四邊形是矩形.其中,正確的個(gè)數(shù)是(

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了參加學(xué)校舉行的傳統(tǒng)文化知識(shí)競賽,某班進(jìn)行了四次模擬訓(xùn)練,將成績優(yōu)秀的人數(shù)和優(yōu)秀率繪制成如下兩個(gè)不完整的統(tǒng)計(jì)圖:

(1)該班總?cè)藬?shù)是 ;

(2)根據(jù)計(jì)算,請你補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;

(3)觀察補(bǔ)全后的統(tǒng)計(jì)圖,寫出一條你發(fā)現(xiàn)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E是AB邊的中點(diǎn),DE與CB的延長線交于點(diǎn)F.

(1)求證:ADE≌△BFE;

(2)若DF平分ADC,連接CE.試判斷CE和DF的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司有A型產(chǎn)品40件,B型產(chǎn)品60件,分配給下屬甲、乙兩個(gè)商店銷售,其中70件給甲店,30件給乙店,且都能賣完.兩商店銷售這兩種產(chǎn)品每件的利潤(元)如下表.設(shè)分配給甲店A型產(chǎn)品件,這家公司賣出這100件產(chǎn)品的總利潤為W(元).

(1)求W關(guān)于的函數(shù)關(guān)系式,并求出的取值范圍;

(2)若公司要求總利潤不低于17560元,說明有多少種不同分配方案?

(3)實(shí)際銷售過程中,公司發(fā)現(xiàn)這批產(chǎn)品尤其是A型產(chǎn)品很暢銷,便決定對甲店的最后21A型產(chǎn)品每件提價(jià)元銷售(為正整數(shù)).兩店全部銷售完畢后結(jié)果的總利潤為18000元,求 .并寫出公司這100件產(chǎn)品對甲乙兩店是如何分配的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,兩點(diǎn).

(1)求一次函數(shù)的表達(dá)式;

(2)若將直線向下平移個(gè)單位長度后與反比例函數(shù)的圖像有且只有一個(gè)公共點(diǎn),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過對《勾股定理》的學(xué)習(xí),我們知道:如果一個(gè)三角形中,兩邊的平方和等于第三邊的平方,那么這個(gè)三角形一定是直角三角形.如果我們新定義一種三角形——兩邊的平方和等于第三邊平方的2倍的三角形叫做奇異三角形.

1)根據(jù)奇異三角形的定義,請你判斷:等邊三角形一定是奇異三角形嗎?

(填或不是);

2)若某三角形的三邊長分別為1、、2,則該三角形是不是奇異三角形,請做出判斷并寫出判斷依據(jù);

3)在中,兩邊長分別為,且且,則這個(gè)三角形是不是奇異三角形?請做出判斷并寫出判斷依據(jù);

探究:Rt中,,且b>a,若Rt是奇異三角形,求.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程k2x2﹣2(k+1)x+1=0有兩個(gè)實(shí)數(shù)根.

(1)求k的取值范圍;

(2)當(dāng)k=1時(shí),設(shè)所給方程的兩個(gè)根分別為x1x2,求(x1﹣2)(x2﹣2)的值.

查看答案和解析>>

同步練習(xí)冊答案