【題目】乘法公式的探究及應(yīng)用.
(1)如圖1可以求出陰影部分的面積是(寫(xiě)成兩數(shù)平方差的形式);
(2)如圖2若將陰影部分裁剪下來(lái),重新拼成一個(gè)矩形,它的寬是 , 長(zhǎng)是 , 面積是(寫(xiě)成多項(xiàng)式乘法的形式);
(3)比較圖1、圖2兩圖的陰影部分面積,可以得到乘法公式 (用式子表達(dá));
(4)運(yùn)用你所得到的公式,計(jì)算下列各題:
①(2m+n﹣p)(2m﹣n+p)
②10.3×9.7.
【答案】
(1)a2﹣b2
(2)a﹣b,a+b,(a+b)(a﹣b)
(3)(a+b)(a﹣b)=a2﹣b2
(4)解:①原式=[2m+(n﹣p)][2m﹣(n﹣p)]
=(2m)2﹣(n﹣p)2
=4m2﹣n2+2np﹣p2;
②原式=(10+0.3)×(10﹣0.3)
=102﹣0.32
=100﹣0.09
=99.91.
【解析】(1)利用正方形的面積公式可知:陰影部分的面積=a2﹣b2;
所以答案是:a2﹣b2;
( 2 )由圖可知矩形的寬是a﹣b,長(zhǎng)是a+b,所以面積是(a+b)(a﹣b);
所以答案是:a﹣b,a+b,(a+b)(a﹣b);
( 3 )(a+b)(a﹣b)=a2﹣b2(等式兩邊交換位置也可);
所以答案是:(a+b)(a﹣b)=a2﹣b2;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一組正方形按如圖所示的方式放置,其中頂點(diǎn)B1在y軸上,頂點(diǎn)C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長(zhǎng)為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…則正方形A2016B2016C2016D2016的邊長(zhǎng)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A1(2,2)在直線y=x上,過(guò)點(diǎn)A1作A1B1∥y軸交直線于點(diǎn)B1,以點(diǎn)A1為直角頂點(diǎn),A1B1為直角邊在A1B1的右側(cè)作等腰直角△A1B1C1,再過(guò)點(diǎn)C1作A2B2∥y軸,分別交直線y=x和于A2,B2兩點(diǎn),以點(diǎn)A2為直角頂點(diǎn),A2B2為直角邊在A2B2的右側(cè)作等腰直角△A2B2C2…,按此規(guī)律進(jìn)行下去,則等腰直角△AnBnCn的面積為 .(用含正整數(shù)n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】分解因式:
(1)3ma3+6m2a2-12ma4; (2)a(m-n)-b(n-m)+c(-n+m);
(3)-a+2a2-a3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAC=∠DAF=90°,AB=AC,AD=AF,點(diǎn)D、E為BC邊上的兩點(diǎn),且∠DAE=45°,連接EF、BF,則下列結(jié)論:
①△AED≌△AEF
②△AED為等腰三角形
③BE+DC>DE
④BE2+DC2=DE2 ,
其中正確的有( )個(gè).
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)用尺規(guī)在邊BC上求作一點(diǎn)P,使PA=PB(不寫(xiě)作法,保留作圖痕跡);
(2)連結(jié)AP,若AC=4,BC=8時(shí),試求點(diǎn)P到AB邊的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列變形正確的是( )
A.由5=x一2得x=-5-2
B.由5y=0得y=
C.由2x=3x+5得-5=3x-2x
D.由3x=-2得x=-
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:底與腰的比是的等腰三角形叫做黃金等腰三角形.
如圖,已知△ABC中,AB=BC,∠C=36°,BA1平分∠ABC交AC于A1.
(1)=AA1A C;
(2)探究:△ABC是否為黃金等腰三角形?請(qǐng)說(shuō)明理由;(提示:此處不妨設(shè)AC=1)
(3)應(yīng)用:已知AC=a,作A1B1∥AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2∥AB交B2,B2A3平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此規(guī)律操作下去,用含a,n的代數(shù)式表示An﹣1An.(n為大于1的整數(shù),直接回答,不必說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把拋物線y=x2向左平移2個(gè)單位,向上平移5個(gè)單位,則平移后的拋物線的解析式為( )
A.y=(x-2)2-5B.y=(x+2)2-5C.y=(x-2)2+5D.y=(x+2)2+5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com