【題目】已知關(guān)于的一元二次方程有兩個不相等的實(shí)數(shù)根.
(1)求的取值范圍;
(2)若為非負(fù)整數(shù),且該方程的根都是有理數(shù),求出該方程的根.
【答案】(1)m<2;(2)x1=3,x2=-1.
【解析】
(1)利用根與系數(shù)的關(guān)系得到△=[2(m-1)]2-4(m2-3)=-8m+16>0,然后解不等式即可;
(2)先利用m的范圍得到m=0或m=1,再分別求出m=0和m=1時方程的根,然后根據(jù)根的情況確定滿足條件的m的值.
解:(1)△=[2(m-1)]2-4(m2-3)=-8m+16.
∵方程有兩個不相等的實(shí)數(shù)根,
∴△>0.
即-8m+16>0.
解得m<2;
(2)∵m<2,且m為非負(fù)整數(shù),
∴m=0或m=1,
當(dāng)m=0時,原方程為x2-2x-3=0,
解得x1=3,x2=-1,
當(dāng)m=1時,原方程為x2-2=0,
解得,不符合題意舍去,
綜上所述m=0,此時方程的解為x1=3,x2=-1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC是等腰直角三角形,在兩腰AB、AC外側(cè)作兩個等邊三角形ABD和ACE,AM和AN分別是等邊三角形ABD和ACE的角平分線,連接CM、BN,CM與AB交于點(diǎn)P.
(1)求證:CM=BN;
(2)如圖②,點(diǎn)F為角平分線AN上一點(diǎn),且∠CPF=30°,求證:△APF∽△AMC;
(3)在(2)的條件下,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工程隊(duì)承接了60萬平方米的綠化工程,由于情況有變,…設(shè)原計(jì)劃每天綠化的面積為萬平方米,列方程為,根據(jù)方程可知省路的部分是( )
A.實(shí)際每天的工作效率比原計(jì)劃提高了,結(jié)果提前30天完成了這一任務(wù)
B.實(shí)際每天的工作效率比原計(jì)劃提高了,結(jié)果延誤30天完成了這一任務(wù)
C.實(shí)際每天的工作效率比原計(jì)劃降低了,結(jié)果延誤30天完成了這一任務(wù)
D.實(shí)際每天的工作效率比原計(jì)劃降低了,結(jié)果提前30天完成了這一任務(wù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+3在坐標(biāo)系中的位置如圖所示,它與x,y軸的交點(diǎn)分別為A,B,P是其對稱軸x=1上的動點(diǎn),根據(jù)圖中提供的信息,給出以下結(jié)論:①2a+b=0,②x=3是ax2+bx+3=0的一個根,③△PAB周長的最小值是+3.其中正確的是( 。
A. ①②③ B. 僅有①② C. 僅有①③ D. 僅有②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形的頂點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)在軸的正半軸上,且于點(diǎn),點(diǎn)的坐標(biāo)為,,,點(diǎn)是線段上一點(diǎn),且,連接.
(1)求證:是等邊三角形;
(2)求點(diǎn)的坐標(biāo);
(3)平行于的直線從原點(diǎn)出發(fā),沿軸正方向平移.設(shè)直線被四邊形截得的線段長為,直線與軸交點(diǎn)的橫坐標(biāo)為.
①當(dāng)直線與軸的交點(diǎn)在線段上(交點(diǎn)不與點(diǎn)重合)時,請直接寫出與的函數(shù)關(guān)系式(不必寫出自變量的取值范圍)
②若,請直接寫出此時直線與軸的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊,,將繞點(diǎn)A順時針旋轉(zhuǎn),得到,點(diǎn)E是某邊的一點(diǎn),當(dāng)為直角三角形時,連接,作于F,那么的長度是_________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,BC=6,DE是△ABC的中位線,點(diǎn)D在AB上,把點(diǎn)B繞點(diǎn)D按順時針方向旋轉(zhuǎn)α(0°<α<180°)角得到點(diǎn)F,連接AF,BF.下列結(jié)論:①△ABF是直角三角形;②若△ABF和△ABC全等,則α=2∠BAC或2∠ABC;③若α=90°,連接EF,則S△DEF=4.5;其中正確的結(jié)論是( )
A.①②B.①③C.①②③D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,.將繞點(diǎn)逆時針旋轉(zhuǎn)一定角度后得到,其中點(diǎn)的對應(yīng)點(diǎn)落在邊上,則圖中陰影部分的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為平行四邊形ABCD的邊AD上的一點(diǎn),E,F分別為PB,PC的中點(diǎn),△PEF,△PDC,△PAB的面積分別為S,,.若S=3,則的值為( )
A.24B.12C.6D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com