拋物線軸于、兩點,交軸于點,已知拋物線的對稱軸為,,

(1)求二次函數(shù)的解析式;

(2) 在拋物線對稱軸上是否存在一點,使點、兩點距離之差最大?若存在,求出點坐標;若不存在,請說明理由;

(3)平行于軸的一條直線交拋物線于兩點,若以為直徑的圓恰好與軸相切,求此圓的半徑.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

拋物線軸于、兩點,交軸于點,頂點為.

【小題1】寫出拋物線的對稱軸及、兩點的坐標(用含的代數(shù)式表示)
【小題2】連接并以為直徑作⊙,當時,請判斷⊙是否經(jīng)過點,并說明理由;
【小題3】在(2)題的條件下,點是拋物線上任意一點,過作直線垂直于對稱軸,垂足為. 那么是否存在這樣的點,使△與以、為頂點的三角形相似?若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年河南省周口市黃集二中九年級上學期聯(lián)考數(shù)學卷 題型:解答題

拋物線軸于、兩點,交軸于點,頂點為.

【小題1】(1)寫出拋物線的對稱軸及、兩點的坐標(用含的代數(shù)式表示)
【小題2】(2)連接并以為直徑作⊙,當時,請判斷⊙是否經(jīng)過點,并說明理由;
【小題3】(3)在(2)題的條件下,點是拋物線上任意一點,過作直線垂直于對稱軸,垂足為. 那么是否存在這樣的點,使△與以、、為頂點的三角形相似?若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年初中畢業(yè)升學考試(山東濰坊卷)數(shù)學(帶解析) 題型:解答題

拋物線軸于、兩點,交軸于點,已知拋物線的對稱軸為,,,
(1)求二次函數(shù)的解析式;
在拋物線對稱軸上是否存在一點,使點兩點距離之差最大?若存在,求出點坐標;若不存在,請說明理由;
平行于軸的一條直線交拋物線于兩點,若以為直徑的圓恰好與軸相切,求此圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年初中畢業(yè)升學考試(山東濰坊卷)數(shù)學(解析版) 題型:解答題

拋物線軸于、兩點,交軸于點,已知拋物線的對稱軸為,

,

(1)求二次函數(shù)的解析式;

(2)   在拋物線對稱軸上是否存在一點,使點兩點距離之差最大?若存在,求出點坐標;若不存在,請說明理由;

(3)   平行于軸的一條直線交拋物線于兩點,若以為直徑的圓恰好與軸相切,求此圓的半徑.

 

 

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年河南省周口市九年級上學期聯(lián)考數(shù)學卷 題型:解答題

拋物線軸于、兩點,交軸于點,頂點為.

1.(1)寫出拋物線的對稱軸及、兩點的坐標(用含的代數(shù)式表示)

2.(2)連接并以為直徑作⊙,當時,請判斷⊙是否經(jīng)過點,并說明理由;

3.(3)在(2)題的條件下,點是拋物線上任意一點,過作直線垂直于對稱軸,垂足為. 那么是否存在這樣的點,使△與以、、為頂點的三角形相似?若存在,請求出點的坐標;若不存在,請說明理由.

 

查看答案和解析>>

同步練習冊答案